# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import paddle import paddle.fluid as fluid import unittest paddle.disable_static() SEED = 2020 np.random.seed(SEED) paddle.manual_seed(SEED) class Generator(fluid.dygraph.Layer): def __init__(self): super(Generator, self).__init__() self.conv1 = paddle.nn.Conv2d(3, 3, 3, padding=1) def forward(self, x): x = self.conv1(x) x = fluid.layers.tanh(x) return x class Discriminator(fluid.dygraph.Layer): def __init__(self): super(Discriminator, self).__init__() self.convd = paddle.nn.Conv2d(6, 3, 1) def forward(self, x): x = self.convd(x) return x class TestRetainGraph(unittest.TestCase): def cal_gradient_penalty(self, netD, real_data, fake_data, edge_data=None, type='mixed', constant=1.0, lambda_gp=10.0): if lambda_gp > 0.0: if type == 'real': interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = paddle.rand((real_data.shape[0], 1)) alpha = paddle.expand(alpha, [ real_data.shape[0], np.prod(real_data.shape) // real_data.shape[0] ]) alpha = paddle.reshape(alpha, real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.stop_gradient = False real_data.stop_gradient = True fake_AB = paddle.concat((real_data.detach(), interpolatesv), 1) disc_interpolates = netD(fake_AB) outs = paddle.fill_constant(disc_interpolates.shape, disc_interpolates.dtype, 1.0) gradients = paddle.grad( outputs=disc_interpolates, inputs=fake_AB, grad_outputs=outs, create_graph=True, retain_graph=True, only_inputs=True) gradients = paddle.reshape(gradients[0], [real_data.shape[0], -1]) gradient_penalty = paddle.reduce_mean((paddle.norm( gradients + 1e-16, 2, 1) - constant)** 2) * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None def run_retain(self, need_retain): g = Generator() d = Discriminator() optim_g = paddle.optimizer.Adam(parameter_list=g.parameters()) optim_d = paddle.optimizer.Adam(parameter_list=d.parameters()) gan_criterion = paddle.nn.MSELoss() l1_criterion = paddle.nn.L1Loss() A = np.random.rand(2, 3, 32, 32).astype('float32') B = np.random.rand(2, 3, 32, 32).astype('float32') realA = paddle.to_variable(A) realB = paddle.to_variable(B) fakeB = g(realA) optim_d.clear_gradients() fake_AB = paddle.concat((realA, fakeB), 1) G_pred_fake = d(fake_AB.detach()) false_target = paddle.fill_constant(G_pred_fake.shape, 'float32', 0.0) G_gradient_penalty, _ = self.cal_gradient_penalty( d, realA, fakeB, lambda_gp=10.0) loss_d = gan_criterion(G_pred_fake, false_target) + G_gradient_penalty loss_d.backward(retain_graph=need_retain) optim_d.minimize(loss_d) optim_g.clear_gradients() fake_AB = paddle.concat((realA, fakeB), 1) G_pred_fake = d(fake_AB) true_target = paddle.fill_constant(G_pred_fake.shape, 'float32', 1.0) loss_g = l1_criterion(fakeB, realB) + gan_criterion(G_pred_fake, true_target) loss_g.backward() optim_g.minimize(loss_g) def test_retain(self): self.run_retain(need_retain=True) self.assertRaises( fluid.core.EnforceNotMet, self.run_retain, need_retain=False) if __name__ == '__main__': unittest.main()