/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/operators/npu_op_runner.h" #include "paddle/fluid/operators/scale_op.h" namespace paddle { namespace operators { template class ScaleNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* out = ctx.Output("Out"); auto scale = static_cast(ctx.Attr("scale")); auto bias = static_cast(ctx.Attr("bias")); auto bias_after_scale = ctx.Attr("bias_after_scale"); auto stream = ctx.template device_context() .stream(); float _power = 1.0; VLOG(4) << "scale:" << scale << ", bias:" << bias << " ,bias_after_scale:" << bias_after_scale; if (bias_after_scale) { out->mutable_data(ctx.GetPlace()); auto runner = NpuOpRunner("Power", {*x}, {*out}, {{"power", _power}, {"scale", scale}, {"shift", bias}}); runner.Run(stream); } else { Tensor tmp_x(x->type()); tmp_x.Resize(x->dims()); tmp_x.mutable_data(ctx.GetPlace()); auto runner_tmp = NpuOpRunner("Adds", {*x}, {tmp_x}, {{"value", bias}}); runner_tmp.Run(stream); out->mutable_data(ctx.GetPlace()); float _bias = 0.0; auto runner = NpuOpRunner("Power", {tmp_x}, {*out}, {{"power", _power}, {"scale", scale}, {"shift", _bias}}); runner.Run(stream); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL( scale, ops::ScaleNPUKernel, ops::ScaleNPUKernel);