/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/unstack_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void UnStackGradKernel(const Context &dev_ctx, const std::vector &x, int axis, DenseTensor *x_grad) { using XPUType = typename XPUTypeTrait::Type; if (axis < 0) { axis += x[0]->dims().size() + 1; } dev_ctx.template Alloc(x_grad); auto &dim = x[0]->dims(); std::vector xdims; for (auto i = 0; i < dim.size(); ++i) { xdims.push_back(dim[i]); } xdims.push_back(1); std::vector> xdims_list; int n = static_cast(x.size()); for (int i = 0; i < n; i++) { xdims_list.push_back(xdims); } std::vector x_list; for (int i = 0; i < n; i++) { x_list.push_back(reinterpret_cast(x[i]->data())); } int r = xpu::concat(dev_ctx.x_context(), x_list, reinterpret_cast(x_grad->data()), xdims_list, axis); PADDLE_ENFORCE_XDNN_SUCCESS(r, "concat in unstack_grad op"); } } // namespace phi PD_REGISTER_KERNEL(unstack_grad, XPU, ALL_LAYOUT, phi::UnStackGradKernel, float, phi::dtype::float16, int, int64_t) {}