# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import pickle import numpy as np import paddle from paddle import _legacy_C_ops from paddle.fluid import backward, core, framework, unique_name from paddle.fluid.dygraph.base import switch_to_static_graph from paddle.fluid.framework import OpProtoHolder, _non_static_mode from paddle.jit.dy2static.partial_program import ( LazyInitialized, add_build_strategy_for, ) from paddle.nn.layer import layers from .dy2static.utils import _out_grad_names, _param_grad_names __all__ = [] INFER_MODEL_SUFFIX = ".pdmodel" INFER_PARAMS_SUFFIX = ".pdiparams" INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info" INFER_PROPERTY_SUFFIX = '.meta' LOADED_VAR_SUFFIX = "load" PARAMETER_NAME_PREFIX = "param" BUFFER_NAME_PREFIX = "buffer" def _load_program_desc(model_file_path): # 1. parse program desc with open(model_file_path, "rb") as f: program_desc_str = f.read() program_desc = core.ProgramDesc(program_desc_str) if not core._is_program_version_supported(program_desc._version()): raise ValueError( "Unsupported program version: %d\n" % program_desc._version() ) return program_desc def _is_persistable(var_desc): if ( var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or var_desc.type() == core.VarDesc.VarType.FETCH_LIST or var_desc.type() == core.VarDesc.VarType.READER or var_desc.type() == core.VarDesc.VarType.RAW ): return False return var_desc.persistable() def _is_parameter(persistable_var_desc, program_desc): # 1. firstly, param should be input of op input_ops = [] # op can be repeated for block_idx in range(program_desc.num_blocks()): block = program_desc.block(block_idx) for op_idx in range(block.op_size()): op = block.op(op_idx) # NOTE: parameter is the input of a certain op if persistable_var_desc.name() in op.input_arg_names(): input_ops.append(op) # 2. secondly, param should not be output of op or be same op's output for block_idx in range(program_desc.num_blocks()): block = program_desc.block(block_idx) for op_idx in range(block.op_size()): op = block.op(op_idx) if persistable_var_desc.name() in op.output_arg_names(): # such as batch_norm_op if op in input_ops: continue else: return False return True def _get_persistable_vars(program_desc): persistable_vars = [] for i in range(program_desc.num_blocks()): block = program_desc.block(i) persistable_vars.extend(list(filter(_is_persistable, block.all_vars()))) return persistable_vars def _get_persistable_var_names(program_desc): """ Get all persistable variable names in ProgramDesc. """ var_names = [] persistable_vars = _get_persistable_vars(program_desc) for var in persistable_vars: var_names.append(var.name()) return var_names def _get_all_var_names(program_desc): all_var_names = set() for i in range(program_desc.num_blocks()): block = program_desc.block(i) for var in block.all_vars(): all_var_names.add(var.name()) return all_var_names @switch_to_static_graph def _append_loaded_suffix(name): """ Append loaded suffix to the given variable name e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0 """ suffix = LOADED_VAR_SUFFIX new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix))) return new_name @switch_to_static_graph def _generate_unique_var_name(prefix): return unique_name.generate_with_ignorable_key(prefix) def _append_loaded_suffix_to_var(program_desc): suffix_varname_dict = {} persistable_vars = _get_persistable_vars(program_desc) for var_desc in persistable_vars: old_name = var_desc.name() new_name = _append_loaded_suffix(var_desc.name()) suffix_varname_dict[new_name] = old_name var_desc.set_name(new_name) for block_idx in range(program_desc.num_blocks()): block = program_desc.block(block_idx) block._rename_var(old_name.encode(), new_name.encode()) for op_idx in range(block.op_size()): op = block.op(op_idx) op._rename_input(old_name, new_name) op._rename_output(old_name, new_name) return suffix_varname_dict @switch_to_static_graph def _generate_unique_var_name_sync_with_main_program(prefix): return unique_name.generate(prefix) def _get_loaded_var_new_old(program_desc, all_new_old_dict_all): new_old_dict = {} persistable_vars = _get_persistable_vars(program_desc) for var_desc in persistable_vars: name_new = var_desc.name() new_old_dict[name_new] = all_new_old_dict_all[name_new] return new_old_dict def _rename_var_program_desc(program_desc, include=None, exclude=None): """ Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication. It is used when loading multiple program during inference. e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD If 'include' is not `None`,variables in include and the corresponding double grad variables (if exist) are renamed. If 'exclude' is not `None`,variables that are in exclude and the corresponding double grad variables (if exist) are not renamed. Args: program_desc(ProgramDesc):the variables in it will be modified. include(List):list of names of variables. exclude(List):list of names of variables. Returns: tuple of (dict_rename_var_new_old, dict_rename_var_old_new) dict_rename_var_new_old is a dict mapping from new name to old name dict_rename_var_old_new is a dict mapping from old name to new name """ dict_rename_var_old_new = {} dict_rename_var_new_old = {} old_names = [] # Store all old names for b_idx in range(program_desc.num_blocks()): cur_block = program_desc.block(b_idx) for var in cur_block.all_vars(): old_names.append(var.name()) # Create dict_rename_var_new_old and dict_rename_var_old_new for non double # grad variables has_double_grad = False for b_idx in range(program_desc.num_blocks()): cur_block = program_desc.block(b_idx) for var_idx, var in enumerate(cur_block.all_vars()): name_old = var.name() is_double_grad_var = "@GRAD" in name_old has_double_grad = has_double_grad or is_double_grad_var should_rename = ( (include is None or name_old in include) and (exclude is None or name_old not in exclude) and not is_double_grad_var ) if should_rename: temp_name = name_old.split('_') if len(temp_name) > 1 and temp_name[-1].isnumeric(): temp_name = "_".join(temp_name[:-1]) else: temp_name = name_old while True: name_new = _generate_unique_var_name_sync_with_main_program( temp_name ) if ( name_new not in old_names[:var_idx] + old_names[var_idx + 1 :] ): break else: name_new = name_old if name_old != name_new: cur_block._rename_var(name_old.encode(), name_new.encode()) if not is_double_grad_var: dict_rename_var_old_new[name_old] = name_new dict_rename_var_new_old[name_new] = name_old # Handle double grad names if has_double_grad: double_grad_rename_dict = {} for name_old in dict_rename_var_old_new: for b_idx in range(program_desc.num_blocks()): cur_block = program_desc.block(b_idx) for var_idx, var in enumerate(cur_block.all_vars()): var_name = var.name() if "@GRAD" in var_name and name_old in var_name: new_var_name = var_name.replace( name_old, dict_rename_var_old_new[name_old] ) double_grad_rename_dict[var_name] = new_var_name for var_name in double_grad_rename_dict: dict_rename_var_old_new[var_name] = double_grad_rename_dict[ var_name ] dict_rename_var_new_old[ double_grad_rename_dict[var_name] ] = var_name # Rename on program desc for b_idx in range(program_desc.num_blocks()): cur_block = program_desc.block(b_idx) for op_idx in range(cur_block.op_size()): op = cur_block.op(op_idx) for input_arg_name in op.input_arg_names(): if input_arg_name in dict_rename_var_old_new: if ( input_arg_name != dict_rename_var_old_new[input_arg_name] ): op._rename_input( input_arg_name, dict_rename_var_old_new[input_arg_name], ) if cur_block.has_var(input_arg_name.encode()): cur_block._rename_var( input_arg_name.encode(), dict_rename_var_old_new[ input_arg_name ].encode(), ) for output_arg_name in op.output_arg_names(): if output_arg_name in dict_rename_var_old_new: if ( output_arg_name != dict_rename_var_old_new[output_arg_name] ): op._rename_output( output_arg_name, dict_rename_var_old_new[output_arg_name], ) if cur_block.has_var(output_arg_name.encode()): cur_block._rename_var( output_arg_name.encode(), dict_rename_var_old_new[ output_arg_name ].encode(), ) program_desc.flush() return dict_rename_var_new_old, dict_rename_var_old_new @switch_to_static_graph def _build_program_by_desc(program_desc): prog = framework.Program() prog.desc = program_desc prog.blocks = [ framework.Block(prog, i) for i in range(prog.desc.num_blocks()) ] prog._sync_with_cpp() return prog def _change_is_test_status(program_desc, is_test): # change all `is_test` attributes for i in range(program_desc.num_blocks()): block = program_desc.block(i) for j in range(block.op_size()): op = block.op(j) if op.has_attr('is_test'): op._set_attr('is_test', is_test) class _ProgramHolder: """ Holds the execution information of a Program. _ProgramHolder is the execution unit of TranslatedLayer, if TranslatedLayer contains multiple _ProgramHolder, it can execute multiple methods _ProgramHolder is an internal concept. """ def __init__(self, program_desc): super().__init__() # input, output, persistable, double_grads var info self._input_descs = [] self._output_descs = [] self._double_grad_descs = [] self._persistable_names = [] # execution scope self._inner_scope = core.Scope() # append suffix var name dict self._suffix_varname_dict = None # forward program self._infer_program_desc = self._preprocess(program_desc) # forward + backward program self._train_program_desc = self._append_backward_desc( self._infer_program_desc ) # forward: @switch_to_static_graph def _create_forward_train_program(self): whole_program = _build_program_by_desc(self._train_program_desc) end_op_index = self._infer_program_desc.block(0).op_size() if end_op_index > 0: return add_build_strategy_for(whole_program, 0, end_op_index) else: return whole_program @LazyInitialized def _forward_program_desc(self): return self._create_forward_train_program().desc # backward @switch_to_static_graph def _create_backward_train_program(self): whole_program = _build_program_by_desc(self._train_program_desc) start_op_index = self._infer_program_desc.block(0).op_size() + len( self._output_descs ) end_op_index = whole_program.desc.block(0).op_size() if start_op_index < end_op_index: return add_build_strategy_for( whole_program, start_op_index, end_op_index ) else: return paddle.static.Program() @LazyInitialized def _backward_program_desc(self): return self._create_backward_train_program().desc @property def infer_program(self): return self._infer_program_desc @property def train_program(self): return self._train_program_desc @property def forward_program(self): return self._forward_program_desc @property def backward_program(self): return self._backward_program_desc @property def input_descs(self): return self._input_descs @property def output_descs(self): return self._output_descs @property def persistable_names(self): return self._persistable_names @property def double_grad_descs(self): return self._double_grad_descs @property def scope(self): return self._inner_scope def _preprocess(self, program_desc): # rename persistable variables of 'program_desc' list_persistable_var = _get_persistable_var_names(program_desc) rename_new_old_dict, _ = _rename_var_program_desc( program_desc, list_persistable_var ) # 1. Prune original program # remove feed, fetch and scale-1 op, remove op_callstack attr ops_to_remove = [] root_block = program_desc.block(0) for i in range(root_block.op_size()): op = root_block.op(i) if op.type() == 'feed': ops_to_remove.append(i) feed_var_name = op.input('X')[0].encode() root_block._remove_var(feed_var_name) self._input_descs.append( root_block.find_var(op.output('Out')[0].encode()) ) elif op.type() == 'scale' and op.output('Out')[0].startswith( 'save_infer_model/scale_' ): ops_to_remove.append(i) out_var_name = op.output('Out')[0].encode() root_block._remove_var(out_var_name) self._output_descs.append( root_block.find_var(op.input('X')[0].encode()) ) elif op.type() == 'fetch': ops_to_remove.append(i) fetch_var_name = op.output('Out')[0].encode() root_block._remove_var(fetch_var_name) # NOTE: some old pre-train models have no extra scale_op if not op.input('X')[0].startswith('save_infer_model/scale_'): self._output_descs.append( root_block.find_var(op.input('X')[0].encode()) ) else: if op.has_attr("op_callstack"): op.remove_attr("op_callstack") for op_idx in reversed(ops_to_remove): root_block._remove_op(op_idx, op_idx + 1) for i in range(program_desc.num_blocks()): block_desc = program_desc.block(i) for var_desc in block_desc.all_vars(): if "@GRAD" in var_desc.name(): self._double_grad_descs.append(var_desc) # 2. Input processing, reverse feed vars self._input_descs.reverse() # 3. Output processing, add scale for outputs tmp_program = _build_program_by_desc(program_desc) # NOTE: [why need append scale for outputs] # When dealing with some more complex pre-training models, there # will be situations where the pre-training model has multiple # fetch outputs. In the scenario of multiple fetch outputs, # there is a special case where multiple outputs of the model # may be on the same branch. According to the user's subsequent # use, multiple outputs may be associated with multiple branches. # These subsequent operations are added in TranslatedLayer is # agnostic during initialization, which results in subsequent # gradient accumulation operations that are required on the # output node in the middle of the branch will not be performed, # resulting in error, details see pull request: # [https://github.com/PaddlePaddle/Paddle/pull/24627] self._append_scale_to_output(tmp_program) # 4. Persistable vars processing # - append loaded suffix to persistable vars # NOTE: [why need to append suffix to persistable vars] # Dygraph and static graph mode use the same naming mechanism. # If users want to load the model fine-tune, it is possible # to add the existing Layer in the loaded model to enhance # the network. For example, the original saved model has linear, # and later after loading, a new linear is added. At this time, # there will be a problem of duplicate names, so here is unified # to add the LOADED suffix to the parameters of the model loaded self._suffix_varname_dict = _get_loaded_var_new_old( program_desc, rename_new_old_dict ) # - get persistable var self._persistable_names = _get_persistable_var_names(program_desc) return program_desc @switch_to_static_graph def _append_scale_to_output(self, program): # 1. append scale & save var scale_output_vars = [] with framework.program_guard(program): for i, out in enumerate(self._output_descs): var = program.global_block().var(out.name()) var = paddle.scale(var, 1.0, name=f"translated_layer/scale_{i}") scale_output_vars.append(var) # 2. update output names & descs for i, var in enumerate(scale_output_vars): self._output_descs[i] = var.desc @switch_to_static_graph def _get_train_forward_program(self, infer_program_desc): program_desc_copy = core.ProgramDesc(infer_program_desc) # 1. set all `is_test` attributes to False _change_is_test_status(program_desc_copy, False) # 2. prepare program and related var # NOTE: To reuse backward interfaces, build Program firstly. # Originally, there is no need to build a program, but need to almost # rewrite a series of methods for append_backward for program_desc. # Therefore, in order to reuse the method of backward.py, build the program here. program = _build_program_by_desc(program_desc_copy) # 3. Add the outputs which is only used for training and not saved in # inference program. for block_idx in range(program.num_blocks): block = program.block(block_idx) for op in block.ops: if op.type == "batch_norm": if ( "ReserveSpace" not in op.output_names or len(op.output("ReserveSpace")) == 0 ): reserve_space = block.create_var( name=unique_name.generate_with_ignorable_key( ".".join(["reserve_space", 'tmp']) ), dtype=block.var(op.input("X")[0]).dtype, type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=True, ) op.desc.set_output("ReserveSpace", [reserve_space.name]) continue # There are some situations that users will add backward op in Forward # function of Layer. And because backward op doesn't have proto. So, we # should skip it when we meet it. if not OpProtoHolder.instance().has_op_proto(op.type): continue proto = OpProtoHolder.instance().get_op_proto(op.type) has_create_intermediate_out = False for output_proto in proto.outputs: if output_proto.intermediate: intermediate_name = output_proto.name if intermediate_name not in op.output_names: has_create_intermediate_out = True intermediate_var = block.create_var( name=unique_name.generate_with_ignorable_key( ".".join( [ op.type + '_' + intermediate_name, 'tmp', ] ) ), type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=True, ) op.desc.set_output( intermediate_name, [intermediate_var.name] ) if has_create_intermediate_out: op.desc.infer_var_type(block.desc) op.desc.infer_shape(block.desc) return program @switch_to_static_graph def _append_backward_desc(self, infer_program_desc): program = self._get_train_forward_program(infer_program_desc) targets = [] for out in self._output_descs: targets.append(program.global_block().var(out.name())) # 3. append backward backward.gradients(targets=targets, inputs=[]) return program.desc # [ TranslatedLayer : Run program in imperative mode ] # # DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator. # # Op's Inputs: # - the input variable of the user feed # - the necessary parameters of the network # Op's Outputs: # - the output variable of fetch # # This op receives a complete program desc, internally creates scope # and executor, executes this program. Key points: # # 1. Data Sharing: # The varBase of the dynamic graph is not in the scope, so before the op # executes the program internally, create persistent variables with the # same name as feed, parameters, and fetch in the scope, and share the # LoDTensor of the op input. # # 2. Forward and Backward Separation: # Because the dynamic graph op performs the forward and backward separately, # in the forward op RunProgram, we only execute the forward part of whole program, # and in the backward op RunProgramGrad, we execute the backward part of program. # We can not separate the program into forward and backward part, which will # make some control flow execution logic wrong. # NOTE: [compatible] deal with model saved by save_inference_model, # which need get var info from program desc def _load_persistable_vars_by_program( model_path, program_holder, params_filename=None ): # make sure the path has been checked persistable_vars = _get_persistable_vars(program_holder.infer_program) load_var_dict = {} for each_var in persistable_vars: orig_each_name = program_holder._suffix_varname_dict[each_var.name()] if _is_parameter(each_var, program_holder.infer_program): # create output varbase new_var = framework.EagerParamBase( shape=each_var.shape(), dtype=each_var.dtype(), name=each_var.name(), type=each_var.type(), persistable=True, ) else: new_var = framework._varbase_creator( type=each_var.type(), name=each_var.name(), shape=each_var.shape(), dtype=each_var.dtype(), persistable=True, ) if params_filename is None: framework._dygraph_tracer().trace_op( type='load', inputs={}, outputs={'Out': new_var}, attrs={'file_path': os.path.join(model_path, orig_each_name)}, ) new_var.stop_gradient = False load_var_dict[each_var.name()] = new_var if params_filename is not None: load_var_list = [] dict_name_old_new = { v: k for k, v in program_holder._suffix_varname_dict.items() } for name in sorted(dict_name_old_new.keys()): load_var_list.append(load_var_dict[dict_name_old_new[name]]) framework._dygraph_tracer().trace_op( type='load_combine', inputs={}, outputs={'Out': load_var_list}, attrs={'file_path': os.path.join(model_path, params_filename)}, ) for each_var in persistable_vars: if not _is_parameter(each_var, program_holder.infer_program): continue param = load_var_dict[each_var.name()] param.stop_gradient = False # NOTE: [Recovery stop gradient information based on the program] # After loading the model, the stop_gradient information # of the original variable is lost, but if a parameter does not # have a corresponding @GRAD variable in the backward program, # it can be said that it is also stop_gradient all_var_names = _get_all_var_names(program_holder.train_program) for var_name in load_var_dict: grad_var_name = var_name + core.grad_var_suffix() if grad_var_name not in all_var_names: load_var_dict[var_name].stop_gradient = True return load_var_dict def _load_persistable_vars( model_path, var_info_path, program_holder, params_filename ): # 1. load extra var info with open(var_info_path, 'rb') as f: extra_var_info = pickle.load(f) # 2. construct var dict load_var_dict = {} load_var_list = [] inv_suffix_varname_dict = { value: key for key, value in program_holder._suffix_varname_dict.items() } # NOTE(chenweihang): we need load persistable vars based the program, # because the program may be pruned when `save_inference_model`, some # var in `extra_var_info` may have been pruned for name in sorted(inv_suffix_varname_dict): if name not in extra_var_info: raise RuntimeError( "The model to be loaded is not complete." "The variable `%s` of program cannot be found in loaded model.", name, ) # get suffix var name, see [why need to append suffix to persistable vars] new_name = inv_suffix_varname_dict[name] # create output varbase if extra_var_info[name].get('trainable', None) is not None: # use default shape and dtype new_var = framework.EagerParamBase( shape=[1], # only to pass check, this shape is not meaningful dtype=core.VarDesc.VarType.FP32, name=new_name, persistable=True, ) else: new_var = framework._varbase_creator( name=new_name, persistable=True ) new_var.stop_gradient = extra_var_info[name]['stop_gradient'] load_var_dict[new_name] = new_var load_var_list.append(new_var) # 3. load all vars assert params_filename is not None, "params_filename should not be None." var_file_path = os.path.join(model_path, params_filename) if not os.path.exists(var_file_path): if len(extra_var_info) != 0: raise ValueError("The model to be loaded is incomplete.") else: framework._dygraph_tracer().trace_op( type='load_combine', inputs={}, outputs={'Out': load_var_list}, attrs={'file_path': var_file_path}, ) return load_var_dict # NOTE(chenweihang): to adapt paddle.load to get state_dict def _remove_varname_suffix(var_dict, program_holder): no_suffix_var_dict = {} for var_name in var_dict: no_suffix_name = program_holder._suffix_varname_dict[var_name] no_suffix_var_dict[no_suffix_name] = var_dict[var_name] return no_suffix_var_dict def _construct_program_holders(model_path, model_filename=None): # make sure the path has been checked program_holder_dict = {} if model_filename is not None: # [compatible] if assign model_filename, only can load one program as Layer.forward model_filename = os.path.basename(model_filename) model_file_path = os.path.join(model_path, model_filename) model_name = model_filename[: -len(INFER_MODEL_SUFFIX)] # Load every file that meets the requirements in the directory model_path. for filename in os.listdir(model_path): if model_filename == filename: func_name = 'forward' model_file_path = os.path.join(model_path, model_filename) elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith( model_name ): parsing_names = filename[ len(model_name) : -len(INFER_MODEL_SUFFIX) + 1 ].split('.') if len(parsing_names) == 3 and len(parsing_names[1]) > 0: func_name = parsing_names[1] model_file_path = os.path.join(model_path, filename) else: continue else: continue program_holder_dict[func_name] = _ProgramHolder( _load_program_desc(model_file_path) ) else: for _, _, file_names in os.walk(model_path): for name in file_names: if 'model' in name: model_file_path = os.path.join(model_path, name) method_name = name.strip('_') if method_name == 'model': method_name = 'forward' else: method_name.replace('model', '') program_holder_dict[method_name] = _ProgramHolder( _load_program_desc(model_file_path) ) return program_holder_dict def _construct_params_and_buffers( model_path, programs, params_filename=None, append_suffix=True ): var_info_filename = str(params_filename) + ".info" var_info_path = os.path.join(model_path, var_info_filename) params_path = os.path.join(model_path, str(params_filename)) if os.path.exists(var_info_path): var_dict = _load_persistable_vars( model_path, var_info_path, programs['forward'], params_filename ) model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)] # Load every file that meets the requirements in the directory model_path. for file_name in os.listdir(model_path): if file_name.startswith(model_name) and file_name.endswith( INFER_PARAMS_SUFFIX ): parsing_names = file_name[ len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1 ].split('.') if len(parsing_names) == 3 and len(parsing_names[1]) > 0: func_name = parsing_names[1] else: continue else: continue var_info_path = os.path.join(model_path, var_info_filename) var_dict.update( _load_persistable_vars( model_path, var_info_path, programs[func_name], file_name ) ) elif params_filename is not None and not os.path.exists(params_path): # When saving XX, there is only '*.pdmodel' return {} else: var_dict = _load_persistable_vars_by_program( model_path, programs['forward'], params_filename ) if not append_suffix: var_dict = _remove_varname_suffix(var_dict, programs['forward']) return var_dict def _valid_vars(vars): return vars if vars else None def _run_dygraph(instance, input, program_holder): # 1. prepare inputs, outputs, attrs input_vars = [] for i, value in enumerate(input): if not isinstance(value, (np.ndarray, core.eager.Tensor)): raise TypeError( "The type of input in TranslatedLayer must be numpy array or Variable(Tensor), but received %s." % type(value) ) # NOTE: In order to unify the API, firstly convert the input to Tensor if isinstance(value, np.ndarray): var = core.eager.Tensor( value=value, name=program_holder.input_descs[i].name(), persistable=False, place=framework._current_expected_place(), zero_copy=True, ) else: var = value # NOTE: we changed var name here, # but it may be an important name set by user var.name = program_holder.input_descs[i].name() input_vars.append(var) if instance._input_args_names is None: instance._input_args_names = [ ins.name() for ins in program_holder.input_descs ] persistable_vars = [] for var_name in program_holder.persistable_names: dy_var_name = instance._persistable_var_name_dict[var_name] if dy_var_name in instance._parameters: persistable_vars.append(instance._parameters[dy_var_name]) elif dy_var_name in instance._buffers: persistable_vars.append(instance._buffers[dy_var_name]) else: raise ValueError( "The persistable variable %s does not exist in current TranslatedLayer." % var_name ) output_vars = [] for var_desc in program_holder.output_descs: var = core.eager.Tensor( dtype=var_desc.dtype(), dims=var_desc.shape(), name=var_desc.name(), type=var_desc.type(), persistable=False, ) output_vars.append(var) # hold forward variables tmp_scope_vec = [program_holder.scope] double_grad_vars = [] for var_desc in program_holder.double_grad_descs: var = core.eager.Tensor( dtype=var_desc.dtype(), dims=var_desc.shape(), name=var_desc.name(), type=var_desc.type(), persistable=False, ) double_grad_vars.append(var) # 2. run program by op trace_program = ( program_holder.infer_program if instance._is_test else program_holder.train_program ) forward_program = ( program_holder._infer_program_desc if instance._is_test else program_holder.forward_program ) end_op_index = program_holder.infer_program.block(0).op_size() attrs = [ 'global_block', trace_program.block(0), 'start_op_index', 0, 'end_op_index', end_op_index, 'is_test', instance._is_test, 'program_id', paddle.utils._hash_with_id(trace_program, instance), ] if not instance._is_test: attrs.extend( ( 'param_grad_names', _param_grad_names(trace_program, persistable_vars), 'out_grad_names', _out_grad_names(trace_program, end_op_index, len(output_vars)), ) ) use_interpretorcore = True attrs.extend(('use_interpretorcore', use_interpretorcore)) if use_interpretorcore: attrs.extend( ( 'forward_global_block', forward_program.block(0), 'backward_global_block', program_holder.backward_program.block(0), ) ) _legacy_C_ops.run_program( _valid_vars(input_vars), _valid_vars(persistable_vars), _valid_vars(output_vars), tmp_scope_vec, _valid_vars(double_grad_vars), None, *attrs, ) # NOTE: [ why need set param's gradient type here ] # if user set sparse gradient mode, the param's gradient # will be SelectedRows, not LoDTensor. But tracer will just # set param grad Tensor by forward Tensor(LoDTensor) # If we don't change grad_var type here, RunProgramOp need # transform SelectedRows to LoDTensor forcibly, it may not # be user wanted result. for persistable_var in persistable_vars: grad_var_name = persistable_var.name + core.grad_var_suffix() grad_var = trace_program.block(0).find_var(grad_var_name.encode()) # NOTE: cannot find var desc maybe not problem, # such as in batch_norm if grad_var is None: continue persistable_var._set_grad_type(grad_var.type()) # 3. prepare output, keep same form with inputs outs = output_vars if len(output_vars) == 1: outs = output_vars[0] return outs def _run_static_graph(input, program_holder, trace_program): main_program = framework.default_main_program() param_var_names = _get_persistable_var_names(trace_program) _, dict_rename_var_old_new = _rename_var_program_desc( trace_program, exclude=param_var_names ) trace_program.flush() output_names = [var.name() for var in program_holder.output_descs] # append blocks from 'trace_program' _append_block( main_program, trace_program, program_holder, input, dict_rename_var_old_new, ) main_program._sync_with_cpp() outs = _get_output_from_program( main_program, program_holder, dict_rename_var_old_new ) if len(outs) == 1: outs = outs[0] return outs def _collect_current_and_parent_var(program, block_idx): ''' Get variables in current block and its parent block. Args: program(Program): The program containing the current block. block_idx(int): index of current block. Returns: List: list of variables. ''' vars = [] if block_idx < 0: return vars for var in program.block(block_idx).vars: vars.append(var) parent_idx = program.block(block_idx).parent_idx if parent_idx > -1: vars += _collect_current_and_parent_var(program, parent_idx) return vars def _append_block( dest_program, src_program_desc, program_holder, input_variables, dict_rename_var_old_new=None, ): ''' Append Variables and Operators in 'src_program_desc' to dest_program. Args: dest_program(Program): Variables and Operators are appended to it. src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'. program_holder(_ProgramHolder): program_holder of TranslatedLayer input_variables(list): list of input variables dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc', use it to map the name of the variable before it was modified and the new name. ''' origin_block_idx = dest_program.current_block_idx param_var_names = _collect_current_and_parent_var( dest_program, origin_block_idx ) append_var_from_block_desc_static( dest_program.block(origin_block_idx), src_program_desc.block(0), exclude=param_var_names, ) name_inp_desc = [inp.name() for inp in program_holder.input_descs] input_names = [inp.name for inp in input_variables] if len(name_inp_desc) != len(input_names): raise ValueError( "The number of input is invalid, expected {}, but received {}.".format( len(name_inp_desc), len(input_names) ) ) for i, out_name in enumerate(name_inp_desc): if dict_rename_var_old_new: out_name = dict_rename_var_old_new[out_name] dest_program.block(origin_block_idx).append_op( type='assign', inputs={'X': [input_names[i]]}, outputs={'Out': [out_name]}, ) append_ops = append_op_from_block_desc_static( dest_program.block(origin_block_idx), src_program_desc.block(0) ) dest_program._sync_with_cpp() offset_block_idx = dest_program.num_blocks - 1 parent_idx = 0 if src_program_desc.num_blocks() > 1: for src_block_idx in range(1, src_program_desc.num_blocks()): src_block = src_program_desc.block(src_block_idx) src_parent_idx = src_block.parent if src_parent_idx > 0: parent_idx = offset_block_idx + parent_idx else: parent_idx = origin_block_idx dest_block = dest_program._create_block(parent_idx=parent_idx) append_var_from_block_desc_static( dest_block, src_block, exclude=param_var_names ) append_ops += append_op_from_block_desc_static( dest_block, src_block ) dest_program._sync_with_cpp() for op in append_ops: if op.has_attr('sub_block'): sub = op.attr('sub_block') if isinstance(sub, framework.core.BlockDesc): origin_id = sub.id if isinstance(sub, framework.Block): origin_id = sub.idx op._set_attr( 'sub_block', dest_program.block(offset_block_idx + origin_id) ) dest_program._sync_with_cpp() dest_program.current_block_idx = origin_block_idx def _get_output_from_program( program, program_holder, dict_rename_var_old_new=None ): """ Get output name of 'program' according to program_holder """ outs = [] for var in program_holder.output_descs: for idx in range(program.num_blocks): vars = program.block(idx).vars var_name = var.name() if dict_rename_var_old_new: var_name = dict_rename_var_old_new[var_name] if var_name in vars: out = vars[var_name] if out not in outs: outs.append(out) return outs def append_op_from_block_desc_static(block, src_block_desc): """ Append Operators of 'src_block_desc' to current block. Args: block(Block): append OP of 'src_block_desc' to it. src_block_desc(BlockDesc): append var of 'src_block_desc' Returns: List: list of the OP that are append to current block. """ ops = [] for i in range(src_block_desc.op_size()): ops.append(append_op_from_desc_static(block, src_block_desc.op(i))) return ops def append_op_from_desc_static(block, op_desc): """ Append Operators to 'block' according to 'op_desc'. Args: block(Block): append OP of 'src_block_desc' to it. op_desc(OpDesc): create OP according to it. Returns: Operator: OP appended to 'block'. """ op_type = op_desc.type() op_append = block.desc.append_op() op_append.copy_from(op_desc) op = framework.Operator( block=block, desc=op_append, type=op_type, inputs=None, outputs=None, attrs=None, ) block.ops.append(op) return op def append_var_from_block_desc_static( block, src_block_desc, include=None, exclude=None ): """ Append Variables of 'src_block_desc' to current block. If 'include' is not `None`,variables that are not in include are not append. If 'exclude' is not `None`,variables that are in exclude will are not append. Args: block(Block): append Variables of 'src_block_desc' to it. src_block_desc(BlockDesc): append var of 'src_block_desc' include(List):list of names of variables exclude(List):list of names of variables Returns: List: list of the variables that are append to current block. """ vars_append = [] for var_desc in src_block_desc.all_vars(): var_desc_name = var_desc.name() should_append = (include is None or var_desc_name in include) and ( exclude is None or var_desc_name not in exclude ) if not block.has_var(var_desc_name) and should_append: var_type = var_desc.type() if var_type in [ core.VarDesc.VarType.SELECTED_ROWS, core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.LOD_TENSOR_ARRAY, ]: data_type = var_desc.dtype() var_shape = var_desc.shape() else: data_type = None var_shape = None if var_type in [ core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.LOD_TENSOR_ARRAY, ]: lod_level = var_desc.lod_level() else: lod_level = None if var_desc.persistable(): current_block = block.program.global_block() else: current_block = block vars_append.append( current_block.create_var( name=var_desc.name(), dtype=data_type, type=var_type, shape=var_shape, lod_level=lod_level, persistable=var_desc.persistable(), set_need_check_feed=var_desc.need_check_feed(), ) ) return vars_append class TranslatedLayer(layers.Layer): """ TranslatedLayer is a ``paddle.nn.Layer`` for holding the model loaded by :ref:`api_paddle_jit_load` . It can be used like a general Layer object in eval or train mode. .. note: The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` . Examples: .. code-block:: python import numpy as np import paddle import paddle.nn as nn import paddle.optimizer as opt BATCH_SIZE = 16 BATCH_NUM = 4 EPOCH_NUM = 4 IMAGE_SIZE = 784 CLASS_NUM = 10 # define a random dataset class RandomDataset(paddle.io.Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([IMAGE_SIZE]).astype('float32') label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples class LinearNet(nn.Layer): def __init__(self): super().__init__() self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM) @paddle.jit.to_static def forward(self, x): return self._linear(x) def train(layer, loader, loss_fn, opt): for epoch_id in range(EPOCH_NUM): for batch_id, (image, label) in enumerate(loader()): out = layer(image) loss = loss_fn(out, label) loss.backward() opt.step() opt.clear_grad() print("Epoch {} batch {}: loss = {}".format( epoch_id, batch_id, np.mean(loss.numpy()))) # 1. train & save model. # create network layer = LinearNet() loss_fn = nn.CrossEntropyLoss() adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters()) # create data loader dataset = RandomDataset(BATCH_NUM * BATCH_SIZE) loader = paddle.io.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2) # train train(layer, loader, loss_fn, adam) # save model_path = "linear.example.model" paddle.jit.save(layer, model_path) # 2. load model as TranslatedLayer # load translated_layer = paddle.jit.load(model_path) # inference translated_layer.eval() x = paddle.randn([1, IMAGE_SIZE], 'float32') pred = translated_layer(x) # fine-tune translated_layer.train() adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters()) train(translated_layer, loader, loss_fn, adam) """ def __init__(self, programs, persistable_vars): super().__init__() if not isinstance(programs, dict): raise TypeError( "TranslatedLayer need to use _ProgramHolder's dict for initialization." ) if not isinstance(persistable_vars, dict): raise TypeError( "TranslatedLayer need to use persistable variable dict for initialization." ) self._program_holder_dict = programs # NOTE(chenweihang): [ why not use var name directly? ] # When add parameter or buffer to Layer by follow apis, # the variable name can't contain `.`, beccause which may cause # AttributeError when access the newly added parameter or buffer # in the form of `self.**.**``, but the EagerParamBase or BarBase # name contains `.` originally, such as `linear_0.w_0`, so here # need to generate new var name for each var self._persistable_var_name_dict = {} # the TranslatedLayer object holded var names count started from 0 with unique_name.guard(): for name, var in persistable_vars.items(): if isinstance(var, framework.EagerParamBase): dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX) self._persistable_var_name_dict[name] = dy_name self.add_parameter(dy_name, var) elif isinstance(var, core.eager.Tensor): dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX) self._persistable_var_name_dict[name] = dy_name self.register_buffer(dy_name, var) else: raise TypeError( "Adding persistent variable which to layer is not supported now" ) self._is_test = True self._input_args_names = None @staticmethod @framework.dygraph_only def _construct(model_path, configs=None): # 0. dir and filename check model_path = os.path.normpath(model_path) if not os.path.isdir(model_path): raise ValueError("There is no directory named '%s'" % model_path) model_filename = None params_filename = None if configs is not None: model_filename = configs.model_filename params_filename = configs.params_filename # 1. load program desc & construct _ProgramHolder programs = _construct_program_holders(model_path, model_filename) # 2. load layer parameters & buffers persistable_vars = _construct_params_and_buffers( model_path, programs, params_filename ) # 3. construct TranslatedLayer object translated_layer = TranslatedLayer(programs, persistable_vars) # 4. create TranslatedLayer's execution method for method_name, program_holder in programs.items(): if translated_layer._input_args_names is None: translated_layer._input_args_names = [ ins.name() for ins in program_holder.input_descs ] setattr( TranslatedLayer, method_name, TranslatedLayer._execution_method_creator( method_name, program_holder ), ) # 5. set TranslatedLayer's default mode to eval translated_layer.eval() return translated_layer @staticmethod def _execution_method_creator(method_name, program_holder): def __i_m_p_l__(self, *input): program_holder = self._program_holder_dict[__i_m_p_l__.__name__] # When using jit.save, it runs in static graph mode. # Run in dynamic graph mode when the model is inferring. if _non_static_mode(): return _run_dygraph(self, input, program_holder) else: # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ] # When use '_run_static_graph(input, program_holder, program_holder.infer_program)', # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number. # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'. p = framework.Program._construct_from_desc( core.ProgramDesc(program_holder.infer_program) ) return _run_static_graph(input, program_holder, p.desc) __i_m_p_l__.__name__ = method_name return __i_m_p_l__ def train(self): self._is_test = False self.training = True def eval(self): self._is_test = True self.training = False def program(self, method_name='forward'): """ Gets translated program of specified method. Args: - method_name (string): mehtod name corresponding to the program to be obtained. Default: 'forward'. Returns: Program Examples: .. code-block:: python import numpy as np import paddle import paddle.nn as nn import paddle.optimizer as opt BATCH_SIZE = 16 BATCH_NUM = 4 EPOCH_NUM = 4 IMAGE_SIZE = 784 CLASS_NUM = 10 # define a random dataset class RandomDataset(paddle.io.Dataset): def __init__(self, num_samples): self.num_samples = num_samples def __getitem__(self, idx): image = np.random.random([IMAGE_SIZE]).astype('float32') label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64') return image, label def __len__(self): return self.num_samples class LinearNet(nn.Layer): def __init__(self): super().__init__() self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM) @paddle.jit.to_static def forward(self, x): return self._linear(x) def train(layer, loader, loss_fn, opt): for epoch_id in range(EPOCH_NUM): for batch_id, (image, label) in enumerate(loader()): out = layer(image) loss = loss_fn(out, label) loss.backward() opt.step() opt.clear_grad() print("Epoch {} batch {}: loss = {}".format( epoch_id, batch_id, np.mean(loss.numpy()))) # create network layer = LinearNet() loss_fn = nn.CrossEntropyLoss() adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters()) # create data loader dataset = RandomDataset(BATCH_NUM * BATCH_SIZE) loader = paddle.io.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=True, drop_last=True, num_workers=2) # train train(layer, loader, loss_fn, adam) # save model_path = "linear.example.model" paddle.jit.save(layer, model_path) # load translated_layer = paddle.jit.load(model_path) # get program program = translated_layer.program() """ # 1. get program holder program_holder = self._get_program_holder(method_name) # 2. get inference program desc program_desc = program_holder.infer_program # 3. construct program program = _build_program_by_desc(program_desc) return program def _get_program_holder(self, method_name='forward'): program_holder = self._program_holder_dict.get(method_name, None) if program_holder is None: raise ValueError( "The method `%s` does not exist in loaded TranslatedLayer." % method_name ) return program_holder def _input_spec(self, method_name='forward'): # 1. get program holder program_holder = self._get_program_holder(method_name) # 2. build input spec by input desc input_spec = [] for var_desc in program_holder.input_descs: spec = paddle.static.InputSpec( shape=var_desc.shape(), dtype=var_desc.dtype(), name=var_desc.name(), ) input_spec.append(spec) return input_spec def _output_spec(self, method_name='forward'): # 1. get program holder program_holder = self._get_program_holder(method_name) # 2. build output spec by output desc output_spec = [] for var_desc in program_holder.output_descs: # NOTE(chenweihang): InputSpec describes a tensor, not just input. # Maybe the name is not good enough. Here we use InputSpec to # construct the description of Output tensor spec = paddle.static.InputSpec( shape=var_desc.shape(), dtype=var_desc.dtype(), name=var_desc.name(), ) output_spec.append(spec) return output_spec