/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Copyright (c) 2022 NVIDIA Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include // Avoid a problem with copysign defined in pyconfig.h on Windows. #ifdef copysign #undef copysign #endif #include #include #include #include #include #include #include // NOLINT // for call_once #include #include #include #include #include #include #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/framework/custom_operator.h" #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/framework/data_type_transform.h" #include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor_cache.h" #include "paddle/fluid/framework/executor_gc_helper.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/garbage_collector.h" #include "paddle/fluid/framework/io/fs.h" #include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h" #include "paddle/fluid/framework/ir/cost_model.h" #include "paddle/fluid/framework/ir/generate_pass.h" #include "paddle/fluid/framework/ir/pass_builder.h" #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor_array.h" #include "paddle/fluid/framework/new_executor/executor_statistics.h" #include "paddle/fluid/framework/new_executor/standalone_executor.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_version_registry.h" #include "paddle/fluid/framework/parallel_executor.h" #include "paddle/fluid/framework/phi_utils.h" #include "paddle/fluid/framework/prune.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/scope_pool.h" #include "paddle/fluid/framework/selected_rows_utils.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/framework/trainer.h" #include "paddle/fluid/framework/type_defs.h" #include "paddle/fluid/framework/version.h" #include "paddle/fluid/imperative/amp_auto_cast.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/memory/allocation/allocator_strategy.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/memory/allocation/cuda_ipc_allocator.h" #endif #include "paddle/fluid/memory/allocation/mmap_allocator.h" #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/common_infer_shape_functions.h" #include "paddle/fluid/operators/py_func_op.h" #include "paddle/fluid/platform/cpu_helper.h" #include "paddle/fluid/platform/device/device_wrapper.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/dynload/dynamic_loader.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/init.h" #include "paddle/fluid/platform/monitor.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler/event_python.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/fluid/platform/profiler/profiler.h" #include "paddle/fluid/pybind/bind_cost_model.h" #include "paddle/fluid/pybind/bind_fleet_executor.h" #include "paddle/fluid/pybind/box_helper_py.h" #include "paddle/fluid/pybind/communication.h" #include "paddle/fluid/pybind/compatible.h" #include "paddle/fluid/pybind/const_value.h" #include "paddle/fluid/pybind/cuda_streams_py.h" #include "paddle/fluid/pybind/data_set_py.h" #include "paddle/fluid/pybind/distributed_py.h" #include "paddle/fluid/pybind/eager.h" #include "paddle/fluid/pybind/exception.h" #include "paddle/fluid/pybind/fleet_wrapper_py.h" #include "paddle/fluid/pybind/generator_py.h" #include "paddle/fluid/pybind/global_value_getter_setter.h" #include "paddle/fluid/pybind/gloo_context_py.h" #include "paddle/fluid/pybind/gloo_wrapper_py.h" #include "paddle/fluid/pybind/heter_wrapper_py.h" #include "paddle/fluid/pybind/imperative.h" #include "paddle/fluid/pybind/inference_api.h" #include "paddle/fluid/pybind/io.h" #include "paddle/fluid/pybind/ir.h" #include "paddle/fluid/pybind/metrics_py.h" #include "paddle/fluid/pybind/ps_gpu_wrapper_py.h" #include "paddle/fluid/pybind/pybind_variant_caster.h" #include "paddle/phi/backends/cpu/cpu_info.h" #include "paddle/phi/backends/device_manager.h" #include "paddle/phi/core/compat/convert_utils.h" #include "paddle/phi/core/lod_utils.h" #include "paddle/utils/none.h" #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/pybind/nccl_wrapper_py.h" #endif #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/pybind/protobuf.h" #include "paddle/fluid/pybind/pybind.h" // NOLINT #include "paddle/fluid/pybind/reader_py.h" #include "paddle/fluid/pybind/tensor_py.h" #include "paddle/fluid/string/to_string.h" #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL) #include "paddle/fluid/operators/nccl/nccl_gpu_common.h" #endif #ifndef PADDLE_WITH_HIP #include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h" #endif #include "paddle/fluid/platform/device/gpu/gpu_info.h" #endif #ifdef PADDLE_WITH_XPU #include "paddle/fluid/platform/device/xpu/xpu_info.h" #include "paddle/fluid/platform/device/xpu/xpu_op_list.h" #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE #include "paddle/phi/capi/capi.h" #endif #include "paddle/fluid/platform/cuda_graph_with_memory_pool.h" #ifdef PADDLE_WITH_IPU #include "paddle/fluid/platform/device/ipu/ipu_backend.h" #include "paddle/fluid/platform/device/ipu/ipu_info.h" #endif #ifdef PADDLE_WITH_CRYPTO #include "paddle/fluid/pybind/crypto.h" #endif #if defined PADDLE_WITH_PSCORE #include "paddle/fluid/pybind/fleet_py.h" #endif #ifdef PADDLE_WITH_CINN #include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h" #endif #include "paddle/fluid/eager/api/utils/global_utils.h" #include "paddle/fluid/imperative/layout_autotune.h" #include "paddle/fluid/pybind/complex.h" #include "paddle/fluid/pybind/eager_utils.h" #include "paddle/fluid/pybind/tensor.h" #include "paddle/phi/api/ext/op_meta_info.h" #include "paddle/phi/core/flags.h" #include "paddle/phi/kernels/autotune/cache.h" #include "paddle/phi/kernels/autotune/switch_autotune.h" #include "pybind11/stl.h" PHI_DECLARE_bool(use_mkldnn); PHI_DECLARE_bool(use_shm_cache); // disable auto conversion to list in Python PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray); PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList); PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList); PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType); namespace paddle { namespace pybind { PyTypeObject *g_framework_tensor_pytype = nullptr; template static void TensorCopyFrom(phi::DenseTensor *dst, const phi::DenseTensor &src, const PlaceType &place, int64_t batch_size) { if (batch_size < 0) { framework::TensorCopy(src, place, dst); } else { auto sliced = src.Slice(0, batch_size); framework::TensorCopy(sliced, place, dst); } } void BindTensor(pybind11::module &m) { // NOLINT using namespace paddle::framework; // NOLINT py::class_ framework_tensor( m, "Tensor", py::buffer_protocol()); g_framework_tensor_pytype = reinterpret_cast(framework_tensor.ptr()); framework_tensor .def("__array__", [](phi::DenseTensor &self) { return TensorToPyArray(self); }) .def("_ptr", [](const phi::DenseTensor &self) { return reinterpret_cast(self.data()); }) .def("_slice", &phi::DenseTensor::Slice) .def("_numel", &phi::DenseTensor::numel) .def("_is_initialized", [](const phi::DenseTensor &self) { return self.IsInitialized(); }) .def("_get_dims", [](const phi::DenseTensor &self) { return vectorize(self.dims()); }) .def("_set_dims", [](phi::DenseTensor &self, const std::vector &dim) { self.Resize(phi::make_ddim(dim)); }) .def("_set_layout", [](phi::DenseTensor &self, const std::string &layout) { self.set_layout(phi::StringToDataLayout(layout)); }) .def("_alloc_float", [](phi::DenseTensor &self, paddle::platform::CustomPlace &place) { self.mutable_data(place); }) .def("_alloc_float", [](phi::DenseTensor &self, paddle::platform::CUDAPlace &place) { self.mutable_data(place); }) .def("_alloc_float", [](phi::DenseTensor &self, paddle::platform::XPUPlace &place) { self.mutable_data(place); }) .def("_alloc_float", [](phi::DenseTensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("_alloc_double", [](phi::DenseTensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("_alloc_int", [](phi::DenseTensor &self, paddle::platform::CPUPlace &place) { self.mutable_data(place); }) .def("_alloc_int", [](phi::DenseTensor &self, paddle::platform::CustomPlace &place) { self.mutable_data(place); }) .def("_alloc_int", [](phi::DenseTensor &self, paddle::platform::XPUPlace &place) { self.mutable_data(place); }) .def("_alloc_int", [](phi::DenseTensor &self, paddle::platform::CUDAPlace &place) { self.mutable_data(place); }) .def( "_alloc_int", [](phi::DenseTensor &self, paddle::platform::CUDAPinnedPlace &place) { self.mutable_data(place); }) .def( "_alloc_float", [](phi::DenseTensor &self, paddle::platform::CUDAPinnedPlace &place) { self.mutable_data(place); }) .def("_mutable_data", [](phi::DenseTensor &self, paddle::platform::CPUPlace &place, paddle::framework::proto::VarType::Type type) { return reinterpret_cast( self.mutable_data(place, framework::TransToPhiDataType(type))); }) .def("_mutable_data", [](phi::DenseTensor &self, paddle::platform::CustomPlace &place, paddle::framework::proto::VarType::Type type) { return reinterpret_cast( self.mutable_data(place, framework::TransToPhiDataType(type))); }) .def("_mutable_data", [](phi::DenseTensor &self, paddle::platform::XPUPlace &place, paddle::framework::proto::VarType::Type type) { return reinterpret_cast( self.mutable_data(place, framework::TransToPhiDataType(type))); }) .def("_mutable_data", [](phi::DenseTensor &self, paddle::platform::CUDAPlace &place, paddle::framework::proto::VarType::Type type) { return reinterpret_cast( self.mutable_data(place, framework::TransToPhiDataType(type))); }) .def("_mutable_data", [](phi::DenseTensor &self, paddle::platform::CUDAPinnedPlace &place, paddle::framework::proto::VarType::Type type) { return reinterpret_cast( self.mutable_data(place, framework::TransToPhiDataType(type))); }) .def("_clear", &phi::DenseTensor::clear) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("_copy_from", &TensorCopyFrom, py::arg("tensor"), py::arg("place"), py::arg("batch_size") = -1) .def("set", SetTensorFromPyArray, py::arg("array"), py::arg("place"), py::arg("zero_copy") = false) .def("set", SetTensorFromPyArray, py::arg("array"), py::arg("place"), py::arg("zero_copy") = false) .def("set", SetTensorFromPyArray, py::arg("array"), py::arg("place"), py::arg("zero_copy") = false) .def("set", SetTensorFromPyArray, py::arg("array"), py::arg("place"), py::arg("zero_copy") = false) .def("set", SetTensorFromPyArray, py::arg("array"), py::arg("place"), py::arg("zero_copy") = false) .def("set", SetTensorFromPyArray, py::arg("array"), py::arg("place"), py::arg("zero_copy") = false, R"DOC( Set the data of Tensor on place with given numpy array. Args: lod (numpy.ndarray): The data to set. place (CPUPlace|CUDAPlace|XPUPlace|IPUPlace|CUDAPinnedPlace): The place where the Tensor is to be set. zero_copy (bool, optional): Whether to share memory with the input numpy array. This parameter only works with CPUPlace. Default: False. Returns: None. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) )DOC") .def( "shape", [](phi::DenseTensor &self) { return vectorize(self.dims()); }, R"DOC( Return the shape of Tensor. Returns: list[int]: The shape of Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) print(t.shape()) # [5, 30] )DOC") .def("_to_dlpack", [](phi::DenseTensor &self) { DLManagedTensor *dmt = framework::toDLPack(self); auto capsule = pybind11::capsule( static_cast(dmt), "dltensor", [](PyObject *ptr) { if (!PyCapsule_IsValid(ptr, "dltensor")) { return; } DLManagedTensor *dmt = static_cast( PyCapsule_GetPointer(ptr, "dltensor")); dmt->deleter(dmt); }); return capsule; }) .def("_set_float_element", TensorSetElement) .def("_get_float_element", TensorGetElement) .def("_set_double_element", TensorSetElement) .def("_get_double_element", TensorGetElement) .def("_set_complex64_element", TensorSetElement) .def("_get_complex64_element", TensorGetElement) .def("_set_complex128_element", TensorSetElement) .def("_get_complex128_element", TensorGetElement) .def("_place", [](phi::DenseTensor &self) { return self.place(); }) .def("_dtype", [](phi::DenseTensor &self) { return framework::TransToProtoVarType(self.type()); }) .def("_layout", [](phi::DenseTensor &self) { return phi::DataLayoutToString(self.layout()); }) .def("_share_data_with", &phi::DenseTensor::ShareDataWith) .def("__getitem__", PySliceTensor, py::return_value_policy::reference) .def("__str__", [](const phi::DenseTensor &self) { std::stringstream ostr; ostr << self; return ostr.str(); }) /* ------ End of original Tensor ------ */ .def("__init__", [](phi::DenseTensor &instance, const std::vector> &recursive_sequence_lengths) { LoD new_lod; new_lod.reserve(recursive_sequence_lengths.size()); std::copy(recursive_sequence_lengths.begin(), recursive_sequence_lengths.end(), std::back_inserter(new_lod)); LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod); PADDLE_ENFORCE_EQ( CheckLoD(new_offset_lod, -1), true, platform::errors::InvalidArgument( "The provided recursive_sequence_lengths info is " "invalid, " "the LoD converted by recursive_sequence_lengths is %s", new_lod)); new (&instance) phi::DenseTensor(new_offset_lod); }) .def("__init__", [](phi::DenseTensor &instance) { new (&instance) phi::DenseTensor(); }) // We implement offset based LOD in C++ while we use length based with // Python API. So we changed set_lod to set_recursive_sequence_lengths // to // avoid misuse. // The discussion is here: // https://github.com/PaddlePaddle/Paddle/issues/10855 .def( "set_lod", [](phi::DenseTensor &self, const std::vector> &lod) { // the input lod is offset-based level-of-detail info LoD new_lod; new_lod.reserve(lod.size()); std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); PADDLE_ENFORCE_EQ( CheckLoD(new_lod, vectorize(self.dims()).front()), true, platform::errors::InvalidArgument( "The provided LoD is invalid, the LoD is %s", new_lod)); self.set_lod(new_lod); }, py::arg("lod"), R"DOC( Set LoD of the Tensor. Args: lod (list[list[int]]): The lod to set. Returns: None. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) t.set_lod([[0, 2, 5]]) print(t.lod()) # [[0, 2, 5]] )DOC") .def( "set_recursive_sequence_lengths", [](phi::DenseTensor &self, const std::vector> &recursive_sequence_lengths) { // the input recursive_sequence_lengths is length-based // level-of-detail info LoD new_lod; new_lod.reserve(recursive_sequence_lengths.size()); std::copy(recursive_sequence_lengths.begin(), recursive_sequence_lengths.end(), std::back_inserter(new_lod)); LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod); PADDLE_ENFORCE_EQ( CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true, platform::errors::InvalidArgument( "The provided recursive_sequence_lengths info is " "invalid, " "the LoD converted by recursive_sequence_lengths is " "%s", new_lod)); self.set_lod(new_offset_lod); }, py::arg("recursive_sequence_lengths"), R"DOC( Set LoD of the Tensor according to recursive sequence lengths. For example, if recursive_sequence_lengths=[[2, 3]], which means there are two sequences with length 2 and 3 respectively, the corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]]. Args: recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths. Returns: None. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) t.set_recursive_sequence_lengths([[2, 3]]) print(t.recursive_sequence_lengths()) # [[2, 3]] print(t.lod()) # [[0, 2, 5]] )DOC") .def( "lod", [](phi::DenseTensor &self) -> std::vector> { // output the offset-based lod info LoD lod = self.lod(); std::vector> new_lod; new_lod.reserve(lod.size()); std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); return new_lod; }, R"DOC( Return the LoD of the Tensor. Returns: list[list[int]]: The lod of the Tensor. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) t.set_lod([[0, 2, 5]]) print(t.lod()) # [[0, 2, 5]] )DOC") // Set above comments of set_lod. .def( "recursive_sequence_lengths", [](phi::DenseTensor &self) -> std::vector> { // output the length-based lod info LoD lod = phi::ConvertToLengthBasedLoD(self.lod()); std::vector> new_lod; new_lod.reserve(lod.size()); std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod)); return new_lod; }, R"DOC( Return the recursive sequence lengths corresponding to of the LodD of the Tensor. Returns: list[list[int]]: The recursive sequence lengths. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) t.set_recursive_sequence_lengths([[2, 3]]) print(t.recursive_sequence_lengths()) # [[2, 3]] )DOC") .def( "has_valid_recursive_sequence_lengths", [](phi::DenseTensor &self) -> bool { // Check that the lod info is valid and match the outermost // dimension of the Tensor data return CheckLoD(self.lod(), vectorize(self.dims()).front()); }, R"DOC( Check whether the LoD of the Tensor is valid. Returns: bool: Whether the LoD is valid. Examples: .. code-block:: python import paddle.fluid as fluid import numpy as np t = fluid.Tensor() t.set(np.ndarray([5, 30]), fluid.CPUPlace()) t.set_recursive_sequence_lengths([[2, 3]]) print(t.has_valid_recursive_sequence_lengths()) # True )DOC") .def("_as_type", [](const phi::DenseTensor &self, paddle::framework::proto::VarType::Type type) { phi::DenseTensor dst; if (self.IsInitialized() && self.numel() > 0) { TransDataType(self, type, &dst); } return dst; }) .def("_copy", [](const phi::DenseTensor &self, const platform::Place &place) { // follow fetch_op's inplementation phi::DenseTensor dst; if (self.IsInitialized() && self.numel() > 0) { TensorCopySync(self, place, &dst); } else { // Not copy, if the src tensor is empty. dst.clear(); dst.Resize({0}); } dst.set_lod(self.lod()); return dst; #ifdef _WIN32 }); #else }) #ifdef PADDLE_WITH_CUDA .def("_share_buffer_with", [](phi::DenseTensor &self, const phi::DenseTensor src, py::tuple t) { auto *cuda_ipc_allocation = dynamic_cast( src.Holder().get()); PADDLE_ENFORCE_NOT_NULL( cuda_ipc_allocation, platform::errors::PreconditionNotMet( "Tensor is not Cuda IPC shared tensor. " "Now only Tensor shared by cuda ipc could use this " "api.")); size_t size = t[0].cast(); auto dtype = static_cast(t[1].cast()); auto dims = phi::make_ddim(t[2].cast>()); auto lod_info = t[3].cast(); auto device_id = t[4].cast(); auto shared_reader_holder = std::make_shared( cuda_ipc_allocation->ptr(), cuda_ipc_allocation->base_ptr(), size, platform::CUDAPlace(device_id)); self.ResetHolderWithType(shared_reader_holder, dtype); self.Resize(dims); self.set_lod(lod_info); VLOG(6) << "Reconstructed tensor with buffer shared!"; }, R"DOC( Deserialize GPU Tensor for existed shared Cuda IPC tensor. Params: tensor: Shared Cuda IPC tensor. tuple: contrains data size, data type, tensor dims, lod information, device index. )DOC") .def("_share_cuda", [](phi::DenseTensor self) { if (!self.IsInitialized() || self.numel() == 0) throw std::runtime_error( "Tensor not initialized or numel is 0. could not pass " "to shared memory. "); auto *holder = dynamic_cast( self.Holder().get()); PADDLE_ENFORCE_EQ( platform::is_gpu_place(holder->place()), true, platform::errors::InvalidArgument( "Tensor is not on GPU. share_cuda only support GPU " "Tensor, share_filename is for CPU tensor.")); void *base_ptr = holder->base_ptr(); ptrdiff_t offset_bytes = reinterpret_cast(holder->ptr()) - reinterpret_cast(base_ptr); cudaIpcMemHandle_t handle; PADDLE_ENFORCE_GPU_SUCCESS(cudaIpcGetMemHandle(&handle, base_ptr)); auto _handle = py::bytes(reinterpret_cast(&handle), (py::ssize_t)CUDA_IPC_HANDLE_SIZE); // TODO(ZHUI): use cuda event, to avoid sync. const auto &device_id = paddle::platform::GetCurrentDeviceId(); auto stream = paddle::platform::get_current_stream(device_id); stream->Synchronize(); int type_idx = static_cast(self.type()); size_t data_size = self.numel() * framework::SizeOfType( framework::TransToProtoVarType(self.type())); return py::make_tuple(_handle, (py::size_t)offset_bytes, data_size, type_idx, vectorize(self.dims()), self.lod(), device_id); }, R"DOC( Serialize GPU Tensor by cudaIpcMemHandle. Returns: tuple: contrains handle, data size, data type, tensor dims, lod information, device index. Examples: .. code-block:: python import paddle tensor = paddle.ones([3,3]) metainfo = tensor.value().get_tensor()._share_cuda() )DOC") .def("_new_shared_cuda", [](py::tuple t) { if (t.size() != 7) throw std::runtime_error( "Invalid Tensor meta info for shared cuda tensor!"); // 1. Create a new C++ instance phi::DenseTensor tensor; // 2. Rebuild Allocation from handle const std::string &handle = t[0].cast(); ptrdiff_t offset_bytes = (ptrdiff_t)t[1].cast(); auto device_id = t[6].cast(); auto base_ptr = memory::allocation::GetIpcBasePtr(handle); size_t size = t[2].cast(); void *dev = base_ptr.get(); dev = reinterpret_cast(dev) + offset_bytes; auto shared_reader_holder = std::make_shared( dev, size, device_id, std::move(base_ptr)); // 3. Rebuild Tensor tensor.ResetHolderWithType( shared_reader_holder, static_cast(t[3].cast())); tensor.Resize(phi::make_ddim(t[4].cast>())); tensor.set_lod(t[5].cast()); return tensor; }, R"DOC( Deserialize GPU lod tensor from cudaIpcMemHandle. Params: tuple: contrains handle, data size, data type, tensor dims, lod information, device index. Examples: .. code-block:: python import paddle tensor = paddle.ones([3,3]) metainfo = tensor.value().get_tensor()._share_cuda() tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_cuda(metainfo)) )DOC") #endif .def("_share_filename", [](phi::DenseTensor &self) { if (!self.IsInitialized() || self.numel() == 0) throw std::runtime_error( "Tensor not initialized or numel is 0. could not pass to " "shared memory. "); auto holder = self.Holder(); PADDLE_ENFORCE_EQ( platform::is_cpu_place(holder->place()) || platform::is_cuda_pinned_place(holder->place()), true, platform::errors::InvalidArgument( "Tensor is not on CPU. share_filename only " "support CPU Tensor.")); auto *mmap_allocation = dynamic_cast< memory::allocation::RefcountedMemoryMapAllocation *>( holder.get()); // If the tensor is not shared, allocate memory map allocation. if (mmap_allocation == nullptr) { void *data_ptr = self.data(); size_t data_size = self.numel() * framework::SizeOfType( framework::TransToProtoVarType(self.type())); int flags = memory::allocation::MAPPED_SHAREDMEM | memory::allocation::MAPPED_EXCLUSIVE; std::string handle = memory::allocation::GetIPCName(); int find_id = -1; if (FLAGS_use_shm_cache) { find_id = memory::allocation::MemoryMapAllocationPool::Instance().FindFromCache(flags, data_size); // NOLINT } if (find_id != -1) { handle = memory::allocation::MemoryMapAllocationPool::Instance().GetById(find_id).file_name_; // NOLINT } auto shared_holder = memory::allocation::AllocateRefcountedMemoryMapAllocation( handle, flags, data_size, find_id); // copy data & reset holder if (platform::is_cuda_pinned_place(holder->place())) { #ifdef PADDLE_WITH_CUDA memory::Copy(platform::CPUPlace(), shared_holder->ptr(), platform::CUDAPinnedPlace(), data_ptr, data_size); #endif } else { memory::Copy(platform::CPUPlace(), shared_holder->ptr(), platform::CPUPlace(), data_ptr, data_size); } self.ResetHolder(shared_holder); mmap_allocation = shared_holder.get(); } int type_idx = static_cast(self.type()); return py::make_tuple(mmap_allocation->ipc_name(), mmap_allocation->size(), type_idx, vectorize(self.dims()), self.lod()); }, R"DOC( Serialize CPU lod tensor in shared memory to tuple. If the tensor is not in shared memory, we will copy it first. Returns: tuple: contrains ipc name, data size, data type, tensor dims and lod imformation. Examples: .. code-block:: python import paddle tensor = paddle.ones([3,3]) metainfo = tensor.value().get_tensor()._share_filename() )DOC") .def("_new_shared_filename", [](py::tuple t) { // __setstate__ if (t.size() != 5) throw std::runtime_error("Invalid Tensor meta info state!"); phi::DenseTensor tensor; // 2. Rebuild Allocation const std::string &ipc_name = t[0].cast(); size_t size = t[1].cast(); int flags = memory::allocation::MAPPED_SHAREDMEM | memory::allocation::MAPPED_NOCREATE; int find_id = -1; if (FLAGS_use_shm_cache) { find_id = memory::allocation::MemoryMapAllocationPool::Instance().FindFromCache(flags, size, ipc_name, /*check_refcount*/ false); // NOLINT } auto shared_holder = memory::allocation::AllocateRefcountedMemoryMapAllocation( ipc_name, flags, size, find_id); // 3. Rebuild Tensor tensor.ResetHolderWithType( shared_holder, static_cast(t[2].cast())); tensor.Resize(phi::make_ddim(t[3].cast>())); tensor.set_lod(t[4].cast()); return tensor; }, R"DOC( Deserialize CPU lod tensor from shared memory. Params: tuple: contrains ipc file name, data size, data type, tensor dims and lod information. Examples: .. code-block:: python import paddle tensor = paddle.ones([3,3]) metainfo = tensor.value().get_tensor()._share_filename() tensor_from_shared = paddle.to_tensor(paddle.fluid.core.LoDTensor._new_shared_filename(metainfo)) )DOC") .def("_shared_incref", [](phi::DenseTensor &self) { auto *mmap_allocation = dynamic_cast< memory::allocation::RefcountedMemoryMapAllocation *>( self.Holder().get()); if (mmap_allocation) { mmap_allocation->incref(); } }, R"DOC( Increase reference count of share_filename tensor. )DOC") .def("_shared_decref", [](phi::DenseTensor &self) { auto *mmap_allocation = dynamic_cast< memory::allocation::RefcountedMemoryMapAllocation *>( self.Holder().get()); if (mmap_allocation) { mmap_allocation->decref(); } }, R"DOC( Decrease reference count of share_filename tensor. )DOC") .def(py::pickle( [](const phi::DenseTensor &t) { // __getstate__ auto holder = t.Holder(); PADDLE_ENFORCE_EQ(platform::is_cpu_place(holder->place()), true, platform::errors::PreconditionNotMet( "Tensor is not on CPU." "Now only Tensor on CPU can be serialized.")); auto *mmap_writer_allocation = dynamic_cast( holder.get()); PADDLE_ENFORCE_NOT_NULL( mmap_writer_allocation, platform::errors::PreconditionNotMet( "Tensor is not in shared memory." "Now only Tensor on shared memory can be serialized.")); int type_idx = static_cast(t.type()); return py::make_tuple(mmap_writer_allocation->ipc_name(), mmap_writer_allocation->size(), type_idx, vectorize(t.dims()), t.lod()); }, [](py::tuple t) { // __setstate__ if (t.size() != 5) throw std::runtime_error("Invalid Tensor state!"); // 1. Create a new C++ instance phi::DenseTensor tensor; // 2. Rebuild Allocation const std::string &ipc_name = t[0].cast(); size_t size = t[1].cast(); auto shared_reader_holder = memory::allocation::RebuildMemoryMapReaderAllocation(ipc_name, size); // 3. Maintain global fd set VLOG(3) << "Tensor ipc name: " << ipc_name; memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name); // 4. Rebuild Tensor tensor.ResetHolderWithType( shared_reader_holder, static_cast(t[2].cast())); tensor.Resize(phi::make_ddim(t[3].cast>())); tensor.set_lod(t[4].cast()); return tensor; })); #endif py::class_(m, "SelectedRows") .def("__init__", [](phi::SelectedRows &instance) { new (&instance) phi::SelectedRows(); }) .def("__init__", [](phi::SelectedRows &instance, const std::vector rows, const int64_t &height) { new (&instance) phi::SelectedRows(rows, height); }) .def( "get_tensor", [](phi::SelectedRows &self) { return self.mutable_value(); }, py::return_value_policy::reference) .def("numel", [](phi::SelectedRows &self) -> int64_t { return self.value().numel(); }) .def("set_height", &phi::SelectedRows::set_height) .def("height", &phi::SelectedRows::height) .def("set_rows", [](phi::SelectedRows &self, std::vector rows) { #if !defined(PADDLE_WITH_CUDA) && !defined(PADDLE_WITH_HIP) self.set_rows(rows); #else std::vector new_rows(rows); self.set_rows(new_rows); #endif }) .def("sync_index", [](phi::SelectedRows &instance) { instance.SyncIndex(); }) .def("rows", [](phi::SelectedRows &self) { auto rows = self.rows(); std::vector new_rows; new_rows.reserve(rows.size()); std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows)); return new_rows; }); py::class_(m, "SparseCooTensor") .def("__init__", [](phi::SparseCooTensor &instance) { new (&instance) phi::SparseCooTensor(); }) .def("numel", [](const phi::SparseCooTensor &self) -> int64_t { return self.numel(); }) .def("indices", [](const phi::SparseCooTensor &self) -> phi::DenseTensor { return self.indices(); }); } } // namespace pybind } // namespace paddle