/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/kernels/funcs/axis_utils.h" #include "paddle/phi/kernels/primitive/kernel_primitives.h" // See Note [ Why still include the fluid headers? ] #include "paddle/fluid/platform/device/gpu/gpu_device_function.h" #include "paddle/fluid/platform/device/gpu/gpu_dnn.h" namespace phi { using ScopedTensorDescriptor = paddle::platform::ScopedTensorDescriptor; using GPUDNNDataLayout = paddle::platform::DataLayout; // Vectorization trait 4 * sizeof(T) template class VecT4 {}; template <> class VecT4 { public: using Type = long4; }; template <> class VecT4 { public: using Type = int4; }; template <> class VecT4 { public: using Type = int2; }; template <> class VecT4 { public: using Type = int2; }; // Vectorization trait 2 * sizeof(T) template class VecT2 {}; template <> class VecT2 { public: using Type = int4; }; template <> class VecT2 { public: using Type = int2; }; template <> class VecT2 { public: using Type = int; }; template <> class VecT2 { public: using Type = int; }; static inline int Log2Ceil(int value) { int log2_value = 0; while ((1 << log2_value) < value) ++log2_value; return log2_value; } template __device__ __forceinline__ void WarpReduceSum(T* sum) { #pragma unroll for (int offset = WarpSize / 2; offset > 0; offset /= 2) { #pragma unroll for (int i = 0; i < BatchSize; ++i) { T sum_val = paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset); sum[i] = sum[i] + sum_val; } } } template __device__ __forceinline__ void WarpReduceMax(T* sum) { #pragma unroll for (int offset = WarpSize / 2; offset > 0; offset /= 2) { #pragma unroll for (int i = 0; i < BatchSize; ++i) { T max_val = paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset); sum[i] = max(sum[i], max_val); } } } template struct ReduceMaxFunctor { inline Ty initial() { return -std::numeric_limits::infinity(); } __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const { return max(a, b); } }; template struct ExpFunctor { HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(std::exp(x)); } }; template struct ExpMulFunctor { HOSTDEVICE inline ExpMulFunctor() { y = static_cast(1.0f); } HOSTDEVICE explicit inline ExpMulFunctor(Tx y) : y((Tx)(y)) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(std::exp(x) * y); } private: Tx y; }; template struct UnarySubFunctor { HOSTDEVICE inline UnarySubFunctor() { y = static_cast(0.0f); } HOSTDEVICE explicit inline UnarySubFunctor(Tx y) : y((Tx)(y)) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(x - y); } private: Tx y; }; template struct UnaryLogFunctor { HOSTDEVICE inline UnaryLogFunctor() {} HOSTDEVICE explicit inline UnaryLogFunctor(int n) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(std::log(x)); } }; template struct DataTransFunctor { HOSTDEVICE inline DataTransFunctor() {} HOSTDEVICE explicit inline DataTransFunctor(int n) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return x == -std::numeric_limits::infinity() ? -std::numeric_limits::infinity() : static_cast(x); } }; template struct UnaryDivFunctor { HOSTDEVICE inline UnaryDivFunctor() { n_inv = static_cast(1.0f); } HOSTDEVICE explicit inline UnaryDivFunctor(Tx n) : n_inv((Tx)(1.0 / n)) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(x * n_inv); } private: Tx n_inv; }; template struct SoftmaxForwardFunctor { HOSTDEVICE inline SoftmaxForwardFunctor(Tx max, Tx sum) : max(max), sum(sum) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(std::exp(x - max) / sum); } private: Tx max; Tx sum; }; template struct SoftmaxBackwardFunctor { HOSTDEVICE inline SoftmaxBackwardFunctor(Tx sum) : sum(sum) {} HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const { return static_cast(out * (grad_out - sum)); } private: Tx sum; }; template struct LogSoftmaxForwardFunctor { HOSTDEVICE inline LogSoftmaxForwardFunctor(Tx max, Tx sum) : max(max), log_sum(std::log(sum)) {} HOSTDEVICE inline Ty operator()(const Tx& x) const { return static_cast(x - max - log_sum); } private: Tx max; Tx log_sum; }; template struct LogSoftmaxBackwardFunctor { HOSTDEVICE inline LogSoftmaxBackwardFunctor(Tx sum) : sum(sum) {} HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const { return static_cast(grad_out - std::exp(out) * sum); } private: Tx sum; }; /* Core function of computing softmax forward for axis=-1. The computation includes - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j} - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} } - Compute: (a_{i,j} - maxvalue_{i}) / s_{i} One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize). For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle api to compute max (sum) in one warp. */ template __global__ void WarpSoftmaxForward(T* softmax, const T* src, const IndexType batch_size, const IndexType stride, const IndexType element_count) { constexpr IndexType kDimCeil = 1 << Log2Elements; constexpr IndexType kWarpSize = (kDimCeil < 32) ? kDimCeil : 32; constexpr IndexType kVSize = sizeof(VecT) / sizeof(T); constexpr IndexType kLoops = kDimCeil / kWarpSize; constexpr IndexType kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1; constexpr IndexType kBatchSize = (kDimCeil <= 32) ? 2 : 1; IndexType first_batch = (static_cast(blockDim.y) * blockIdx.x + threadIdx.y) * kBatchSize; constexpr IndexType kStep = kBatchSize * kLoopsV * kVSize; constexpr IndexType kVItem = kLoopsV * kVSize; constexpr AccT kLowInf = -std::numeric_limits::infinity(); using kMode = kps::details::ReduceMode; // max index to read IndexType idx_max_v[kBatchSize]; #pragma unroll for (IndexType i = 0; i < kBatchSize; i++) { IndexType idx_max = ((i + first_batch) < batch_size) ? element_count : 0; idx_max_v[i] = idx_max / kVSize; } // data src // src_data: the raw data form global memory // sub_data: store the data obtained by (src_data - max), used by log_softmax // exp_data: store the data obtained by (exp(sub_data)), used by softmax T src_data[kBatchSize][kLoopsV][kVSize]; AccT sub_data[kBatchSize][kLoopsV][kVSize]; AccT exp_data[kBatchSize][kLoopsV][kVSize]; kps::Init(&sub_data[0][0][0], kLowInf); kps::Init(&src_data[0][0][0], -std::numeric_limits::infinity()); // data dst T out_tmp[kBatchSize][kLoopsV][kVSize]; // max value AccT max[kBatchSize]; kps::Init(&max[0], kLowInf); // sum value AccT sum[kBatchSize] = {0}; // read data from global memory #pragma unroll for (IndexType i = 0; i < kBatchSize; ++i) { const VecT* src_v = reinterpret_cast(&src[(first_batch + i) * stride]); VecT* reg_v = reinterpret_cast(&src_data[i][0][0]); kps::ReadData( ®_v[0], &src_v[0], idx_max_v[i], 0, kWarpSize, 1); kps::ElementwiseUnary>( &sub_data[i][0][0], &src_data[i][0][0], DataTransFunctor()); } // compute max kps::Reduce, kMode::kLocalMode>( &max[0], &sub_data[0][0][0], ReduceMaxFunctor(), true); WarpReduceMax(max); // compute sum #pragma unroll for (IndexType i = 0; i < kBatchSize; ++i) { kps::ElementwiseUnary>( &sub_data[i][0][0], &sub_data[i][0][0], UnarySubFunctor(max[i])); kps::ElementwiseUnary>( &exp_data[i][0][0], &sub_data[i][0][0], ExpFunctor()); } kps::Reduce, kMode::kLocalMode>( &sum[0], &exp_data[0][0][0], kps::AddFunctor(), true); WarpReduceSum(sum); // write data to global memory #pragma unroll for (IndexType i = 0; i < kBatchSize; ++i) { VecT* softmax_v = reinterpret_cast(&softmax[(first_batch + i) * stride]); VecT* reg_v = reinterpret_cast(&out_tmp[i][0][0]); if (LogMode) { kps::ElementwiseUnary>( &out_tmp[i][0][0], &sub_data[i][0][0], UnarySubFunctor(std::log(sum[i]))); } else { kps::ElementwiseUnary>( &out_tmp[i][0][0], &exp_data[i][0][0], UnaryDivFunctor(sum[i])); } kps::WriteData( &softmax_v[0], ®_v[0], idx_max_v[i], 0, kWarpSize, 1); } } /* Core function of computing softmax backward for axis=-1. The computation includes - Compute sum of exp batch: s_{i} = sum_{j} {src_{i,j} * grad_{i,j} - Compute src_{i,j} * ( grad_{i,j}) - s_{i} ) One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize). For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle api to compute max (sum) in one warp. */ template __global__ void WarpSoftmaxBackward(T* dst, const T* grad, const T* src, int batch_size, int stride, int element_count) { constexpr int kVSize = sizeof(VecT) / sizeof(T); constexpr int kDimCeil = 1 << Log2Elements; constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32; constexpr int kLoops = kDimCeil / kWarpSize; constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1; constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1; int element_count_v = element_count / kVSize; int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize; int local_batches = min(batch_size - first_batch, kBatchSize); // max index to read int idx_max_v[kBatchSize]; #pragma unroll for (int i = 0; i < kBatchSize; i++) { int idx_max = ((i + first_batch) < batch_size) ? element_count : 0; idx_max_v[i] = idx_max / kVSize; } // read data from global memory VecT src_reg[kBatchSize][kLoopsV]; VecT grad_reg[kBatchSize][kLoopsV]; VecT k_value; for (int s = 0; s < kVSize; s++) { reinterpret_cast(&k_value)[s] = 0.0; } kps::Init(&src_reg[0][0], k_value); kps::Init(&grad_reg[0][0], k_value); #pragma unroll for (int i = 0; i < kBatchSize; ++i) { int flag = i < local_batches ? 1 : 0; int ptr = (first_batch + i) * stride; const VecT* src_v = reinterpret_cast(&src[ptr]); const VecT* grad_v = reinterpret_cast(&grad[ptr]); kps::ReadData( &src_reg[i][0], &src_v[0], idx_max_v[i], 0, kWarpSize, flag); kps::ReadData( &grad_reg[i][0], &grad_v[0], idx_max_v[i], 0, kWarpSize, flag); } // change T to AccT AccT src_tmp[kBatchSize][kLoopsV][kVSize]; AccT grad_tmp[kBatchSize][kLoopsV][kVSize]; const T* src_ptr = reinterpret_cast(&src_reg[0][0]); const T* grad_ptr = reinterpret_cast(&grad_reg[0][0]); constexpr int kStep = kBatchSize * kLoopsV * kVSize; constexpr int kVItem = kLoopsV * kVSize; kps::ElementwiseUnary>( &src_tmp[0][0][0], &src_ptr[0], DataTransFunctor()); kps::ElementwiseUnary>( &grad_tmp[0][0][0], &grad_ptr[0], DataTransFunctor()); // compute sum AccT sum[kBatchSize]{0.0}; AccT sum_tmp[kBatchSize][kLoopsV][kVSize]; AccT* gradptr = reinterpret_cast(&grad_tmp[0][0][0]); AccT* srcptr = reinterpret_cast(&src_tmp[0][0][0]); if (LogMode) { kps::Reduce, kps::details::ReduceMode::kLocalMode>( &sum[0], &grad_tmp[0][0][0], kps::AddFunctor(), true); } else { kps::ElementwiseBinary>( &sum_tmp[0][0][0], &gradptr[0], &srcptr[0], kps::MulFunctor()); kps::Reduce, kps::details::ReduceMode::kLocalMode>( &sum[0], &sum_tmp[0][0][0], kps::AddFunctor(), true); } WarpReduceSum(sum); // write result to global memory AccT out[kBatchSize][kLoopsV][kVSize]; T out_tmp[kBatchSize][kLoopsV][kVSize]; #pragma unroll for (int i = 0; i < kBatchSize; ++i) { if (i >= local_batches) break; AccT* gradptr = reinterpret_cast(&grad_tmp[i][0][0]); AccT* srcptr = reinterpret_cast(&src_tmp[i][0][0]); if (LogMode) { kps::ElementwiseUnary>( &out[i][0][0], &srcptr[0], ExpMulFunctor(sum[i])); kps::ElementwiseBinary>( &out_tmp[i][0][0], &gradptr[0], &out[i][0][0], kps::SubFunctor()); } else { kps::ElementwiseUnary>( &out[i][0][0], &gradptr[0], UnarySubFunctor(sum[i])); kps::ElementwiseBinary>( &out_tmp[i][0][0], &srcptr[0], &out[i][0][0], kps::MulFunctor()); } VecT* dst_v = reinterpret_cast(&dst[(first_batch + i) * stride]); VecT* reg_v = reinterpret_cast(&out_tmp[i][0][0]); kps::WriteData( &dst_v[0], ®_v[0], idx_max_v[i], 0, kWarpSize, 1); } } #define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, AccT) \ case Log2Elements: \ WarpSoftmaxForward \ <<>>( \ dst, src, batch_size, stride, element_count); \ break; /* Wrapper of softmax formward with template instantiation on size of input. */ template void SwitchWarpSoftmaxForward(const IndexType blocks, const dim3 threads, const GPUContext& dev_ctx, T* dst, const T* src, const IndexType batch_size, const IndexType stride, const IndexType element_count, IndexType Log2Elements) { using AccT = typename phi::dtype::MPTypeTrait::Type; switch (Log2Elements) { SOFTMAX_WARP_FORWARD_CASE(0, AccT); SOFTMAX_WARP_FORWARD_CASE(1, AccT); SOFTMAX_WARP_FORWARD_CASE(2, AccT); SOFTMAX_WARP_FORWARD_CASE(3, AccT); SOFTMAX_WARP_FORWARD_CASE(4, AccT); SOFTMAX_WARP_FORWARD_CASE(5, AccT); SOFTMAX_WARP_FORWARD_CASE(6, AccT); SOFTMAX_WARP_FORWARD_CASE(7, AccT); SOFTMAX_WARP_FORWARD_CASE(8, AccT); SOFTMAX_WARP_FORWARD_CASE(9, AccT); default: break; } } #define SOFTMAX_WARP_BACKWARD_CASE(Log2Elements, AccT) \ case Log2Elements: \ WarpSoftmaxBackward \ <<>>( \ dst, grad, src, batch_size, stride, element_count); \ break; /* Wrapper of softmax backward with template instantiation on size of input. */ template void SwitchWarpSoftmaxBackward(const int blocks, const dim3 threads, const GPUContext& dev_ctx, T* dst, const T* grad, const T* src, const int batch_size, const int stride, const int element_count, int Log2Elements) { using AccT = typename phi::dtype::MPTypeTrait::Type; switch (Log2Elements) { SOFTMAX_WARP_BACKWARD_CASE(0, AccT); SOFTMAX_WARP_BACKWARD_CASE(1, AccT); SOFTMAX_WARP_BACKWARD_CASE(2, AccT); SOFTMAX_WARP_BACKWARD_CASE(3, AccT); SOFTMAX_WARP_BACKWARD_CASE(4, AccT); SOFTMAX_WARP_BACKWARD_CASE(5, AccT); SOFTMAX_WARP_BACKWARD_CASE(6, AccT); SOFTMAX_WARP_BACKWARD_CASE(7, AccT); SOFTMAX_WARP_BACKWARD_CASE(8, AccT); SOFTMAX_WARP_BACKWARD_CASE(9, AccT); default: break; } } #undef SOFTMAX_WARP_FORWARD_CASE #undef SOFTMAX_WARP_BACKWARD_CASE /** * * Better performence when axis != -1 */ static void GetGridDim( int high_dim, int mid_dim, int low_dim, const dim3& block, dim3* grid) { int device_id = phi::backends::gpu::GetCurrentDeviceId(); int max_mp = phi::backends::gpu::GetGPUMultiProcessors(device_id); int max_threads_per_mp = phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(device_id); int max_threads = max_threads_per_mp * max_mp; int num_threads = block.x * block.y; int max_num_blocks = max_threads / num_threads; int grid_x = (low_dim + block.x - 1) / block.x; grid_x = std::min(grid_x, max_num_blocks); int grid_y = (max_num_blocks + grid_x - 1) / grid_x; grid_y = std::min(grid_y, high_dim); grid->x = grid_x; grid->y = grid_y; } static void GetBlockDim(int mid_dim, int low_dim, dim3* block) { #ifdef __HIPCC__ constexpr int max_num_threads = 256; #else constexpr int max_num_threads = 1024; #endif int block_x = 1 << Log2Ceil(low_dim); int block_y = 1 << Log2Ceil(mid_dim); block->x = std::min(block_x, 32); block->y = std::min(block_y, static_cast(max_num_threads / block->x)); block->x = std::min(block_x, static_cast(max_num_threads / block->y)); } static void GetLaunchConfig( int high_dim, int mid_dim, int low_dim, dim3* grid, dim3* block) { GetBlockDim(mid_dim, low_dim, block); GetGridDim(high_dim, mid_dim, low_dim, *block, grid); } template class Functor> __global__ void NormalSoftmaxForward( T* output, const T* input, int high_dim, int mid_dim, int low_dim) { using kMode = kps::details::ReduceMode; const int high_stride = mid_dim * low_dim; const int mid_stride = low_dim; for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) { for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim; low_id += blockDim.x * gridDim.x) { const int input_offset = high_id * high_stride + low_id; // 1. reduce max AccT max_value = -std::numeric_limits::infinity(); AccT value = -std::numeric_limits::infinity(); for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) { value = static_cast(input[input_offset + mid_id * mid_stride]); max_value = kps::MaxFunctor()(max_value, value); } if (blockDim.y > 1) { kps::Reduce, kMode::kGlobalMode>( &max_value, &max_value, kps::MaxFunctor(), false); } // 2. reduce sum AccT sum = 0; for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) { value = static_cast(input[input_offset + mid_id * mid_stride]); sum += std::exp(value - max_value); } if (blockDim.y > 1) { kps::Reduce, kMode::kGlobalMode>( &sum, &sum, kps::AddFunctor(), false); } // 3. (log)softmax Functor functor(max_value, sum); for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) { int data_offset = input_offset + mid_id * mid_stride; output[data_offset] = functor(static_cast(input[data_offset])); } } } } template class Functor, bool LogMode> __global__ void NormalSoftmaxBackward(T* input_grad, const T* output_grad, const T* output, int high_dim, int mid_dim, int low_dim) { using kMode = kps::details::ReduceMode; const int high_stride = mid_dim * low_dim; const int mid_stride = low_dim; for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) { for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim; low_id += blockDim.x * gridDim.x) { const int grad_offset = high_id * high_stride + low_id; // 1. reduce sum AccT sum = 0; if (LogMode) { for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) { int data_offset = grad_offset + mid_id * mid_stride; sum += static_cast(output_grad[data_offset]); } } else { for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) { int data_offset = grad_offset + mid_id * mid_stride; sum += static_cast(output_grad[data_offset]) * static_cast(output[data_offset]); } } if (blockDim.y > 1) { kps::Reduce, kMode::kGlobalMode>( &sum, &sum, kps::AddFunctor(), false); } // 2. (log)softmax backward Functor functor(sum); for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) { int data_offset = grad_offset + mid_id * mid_stride; input_grad[data_offset] = functor(static_cast(output_grad[data_offset]), static_cast(output[data_offset])); } } } } template void LaunchNormalSoftmaxForward(const GPUContext& dev_ctx, T* output_data, const T* input_data, int high_dim, int mid_dim, int low_dim) { using AccT = typename phi::dtype::MPTypeTrait::Type; dim3 grid, block; GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block); if (LogMode) { NormalSoftmaxForward <<>>( output_data, input_data, high_dim, mid_dim, low_dim); } else { NormalSoftmaxForward <<>>( output_data, input_data, high_dim, mid_dim, low_dim); } } template void LaunchNormalSoftmaxBackward(const GPUContext& dev_ctx, T* input_grad_data, const T* output_grad_data, const T* output_data, int high_dim, int mid_dim, int low_dim) { using AccT = typename phi::dtype::MPTypeTrait::Type; dim3 grid, block; GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block); if (LogMode) { NormalSoftmaxBackward <<>>(input_grad_data, output_grad_data, output_data, high_dim, mid_dim, low_dim); } else { NormalSoftmaxBackward <<>>(input_grad_data, output_grad_data, output_data, high_dim, mid_dim, low_dim); } } template static std::vector GetSoftmaxTensorDims(const phi::DDim& dims, const int axis) { auto dim = static_cast(dims[axis]); auto N = phi::funcs::SizeToAxis(axis, dims); auto D = phi::funcs::SizeOutAxis(axis, dims); return {N, dim, D, 1}; } template void SoftmaxForwardCudnnKernel(const GPUContext& dev_ctx, const T* x_data, const int axis, const int rank, const bool log_mode, const std::vector& tensor_dims, T* out_data) { auto handle = dev_ctx.cudnn_handle(); GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW; ScopedTensorDescriptor scoped_desc; #ifdef PADDLE_WITH_HIP miopenTensorDescriptor_t desc = scoped_desc.descriptor(layout, tensor_dims); auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE : MIOPEN_SOFTMAX_MODE_CHANNEL; auto algo = log_mode ? MIOPEN_SOFTMAX_LOG : MIOPEN_SOFTMAX_ACCURATE; PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::miopenSoftmaxForward_V2( handle, paddle::platform::CudnnDataType::kOne(), desc, x_data, paddle::platform::CudnnDataType::kZero(), desc, out_data, algo, mode)); #else cudnnTensorDescriptor_t desc = scoped_desc.descriptor(layout, tensor_dims); auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE : CUDNN_SOFTMAX_MODE_CHANNEL; auto algo = log_mode ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE; PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward( handle, algo, mode, paddle::platform::CudnnDataType::kOne(), desc, x_data, paddle::platform::CudnnDataType::kZero(), desc, out_data)); #endif } template void LaunchSoftmaxForwardCudnnKernel(const GPUContext& dev_ctx, const DenseTensor& x, const int axis, const bool log_mode, DenseTensor* out) { auto* out_data = out->data(); auto* x_data = x.data(); const int rank = x.dims().size(); std::vector tensor_dims = GetSoftmaxTensorDims(x.dims(), axis); int64_t remaining = tensor_dims[0]; int dim = tensor_dims[1]; int64_t batch_size = std::numeric_limits::max() / dim; int offset = batch_size * dim; while (remaining > 0) { tensor_dims[0] = std::min(remaining, batch_size); SoftmaxForwardCudnnKernel( dev_ctx, x_data, axis, rank, log_mode, tensor_dims, out_data); x_data += offset; out_data += offset; remaining -= batch_size; } } template void SoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx, const T* out_data, const T* dout_data, const int axis, const int rank, const bool log_mode, const std::vector& tensor_dims, T* dx_data) { auto handle = dev_ctx.cudnn_handle(); GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW; ScopedTensorDescriptor scoped_desc; #ifdef PADDLE_WITH_HIP miopenTensorDescriptor_t desc = scoped_desc.descriptor(layout, tensor_dims); auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE : MIOPEN_SOFTMAX_MODE_CHANNEL; auto algo = log_mode ? MIOPEN_SOFTMAX_LOG : MIOPEN_SOFTMAX_ACCURATE; PADDLE_ENFORCE_GPU_SUCCESS( paddle::platform::dynload::miopenSoftmaxBackward_V2( handle, paddle::platform::CudnnDataType::kOne(), desc, out_data, desc, dout_data, paddle::platform::CudnnDataType::kZero(), desc, dx_data, algo, mode)); #else cudnnTensorDescriptor_t desc = scoped_desc.descriptor(layout, tensor_dims); auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE : CUDNN_SOFTMAX_MODE_CHANNEL; auto algo = log_mode ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE; PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxBackward( handle, algo, mode, paddle::platform::CudnnDataType::kOne(), desc, out_data, desc, dout_data, paddle::platform::CudnnDataType::kZero(), desc, dx_data)); #endif } template void LaunchSoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx, const DenseTensor& out, const DenseTensor& dout, const int axis, const bool log_mode, DenseTensor* dx) { auto* dx_data = dx->data(); auto* out_data = out.data(); auto* dout_data = dout.data(); int rank = out.dims().size(); std::vector tensor_dims = GetSoftmaxTensorDims(out.dims(), axis); int64_t remaining = tensor_dims[0]; int dim = tensor_dims[1]; int64_t batch_size = std::numeric_limits::max() / dim; int offset = batch_size * dim; while (remaining > 0) { tensor_dims[0] = std::min(remaining, batch_size); SoftmaxBackwardCudnnKernel(dev_ctx, out_data, dout_data, axis, rank, log_mode, tensor_dims, dx_data); out_data += offset; dout_data += offset; dx_data += offset; remaining -= batch_size; } } #if CUDNN_VERSION < 8100 template <> inline void LaunchSoftmaxForwardCudnnKernel( const GPUContext& dev_ctx, const DenseTensor& x, const int axis, const bool log_mode, DenseTensor* out) { PADDLE_THROW(errors::Unavailable( "This kernel is not supported when the dtype is bf16 and CUDNN_VERSION < " "8100.")); } template <> inline void LaunchSoftmaxBackwardCudnnKernel( const GPUContext& dev_ctx, const DenseTensor& out, const DenseTensor& dout, const int axis, const bool log_mode, DenseTensor* dx) { PADDLE_THROW(errors::Unavailable( "This kernel is not supported when the dtype is bf16 and CUDNN_VERSION < " "8100.")); } #endif template bool UseCudnnSoftmax(const GPUContext& ctx, int64_t softmax_dim, bool last_dim) { bool cudnn_available = ctx.cudnn_handle(); if (!ctx.cudnn_handle()) { if (std::is_same::value) { #if CUDNN_VERSION < 8100 cudnn_available = false; #endif } } constexpr int max_dim = 512; if (!cudnn_available || !last_dim || (softmax_dim <= max_dim && sizeof(T) <= 4)) { return false; } else { return true; } } template void SoftmaxForwardCUDAKernelDriverImpl(const GPUContext& dev_ctx, const DenseTensor& x, const int input_axis, DenseTensor* out) { auto* out_data = out->data(); int rank = x.dims().size(); int axis = phi::funcs::CanonicalAxis(input_axis, rank); std::vector tensor_dims = GetSoftmaxTensorDims(x.dims(), axis); IndexType N = tensor_dims[0]; IndexType dim = tensor_dims[1]; int D = tensor_dims[2]; if (D == 1) { if (!UseCudnnSoftmax(dev_ctx, dim, true)) { int dim_log2 = static_cast(Log2Ceil(dim)); IndexType dim_ceil = 1 << dim_log2; int warp_size = (dim_ceil < 32) ? dim_ceil : 32; int batches_per_warp = (dim_ceil <= 32) ? 2 : 1; // use 128 threads per block to maximimize gpu utilization constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; IndexType blocks = (N + batches_per_block - 1) / batches_per_block; dim3 threads(warp_size, warps_per_block, 1); // vectorization read/write using T4 = typename VecT4::Type; using T2 = typename VecT2::Type; if (dim % 4 == 0) { SwitchWarpSoftmaxForward(blocks, threads, dev_ctx, out_data, x.data(), N, dim, dim, dim_log2); } else if (dim % 2 == 0) { SwitchWarpSoftmaxForward(blocks, threads, dev_ctx, out_data, x.data(), N, dim, dim, dim_log2); } else { SwitchWarpSoftmaxForward(blocks, threads, dev_ctx, out_data, x.data(), N, dim, dim, dim_log2); } } else { LaunchSoftmaxForwardCudnnKernel(dev_ctx, x, axis, LogMode, out); } } else { LaunchNormalSoftmaxForward( dev_ctx, out_data, x.data(), N, dim, D); } } template void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx, const DenseTensor& x, const int input_axis, DenseTensor* out) { if (x.numel() >= std::numeric_limits::max()) { SoftmaxForwardCUDAKernelDriverImpl( dev_ctx, x, input_axis, out); } else { SoftmaxForwardCUDAKernelDriverImpl( dev_ctx, x, input_axis, out); } } template void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx, const DenseTensor& out, const DenseTensor& dout, const int input_axis, DenseTensor* dx) { auto* dx_data = dx->data(); int rank = out.dims().size(); int axis = phi::funcs::CanonicalAxis(input_axis, rank); std::vector tensor_dims = GetSoftmaxTensorDims(out.dims(), axis); int N = tensor_dims[0]; int dim = tensor_dims[1]; int D = tensor_dims[2]; if (D == 1) { if (!UseCudnnSoftmax(dev_ctx, dim, true)) { int dim_log2 = Log2Ceil(dim); int dim_ceil = 1 << dim_log2; int warp_size = (dim_ceil < 32) ? dim_ceil : 32; int batches_per_warp = (dim_ceil <= 128) ? 2 : 1; constexpr int threads_per_block = 128; int warps_per_block = (threads_per_block / warp_size); int batches_per_block = warps_per_block * batches_per_warp; int blocks = (N + batches_per_block - 1) / batches_per_block; dim3 threads(warp_size, warps_per_block, 1); // vectorization read/write using T4 = typename VecT4::Type; using T2 = typename VecT2::Type; if (dim % 4 == 0) { SwitchWarpSoftmaxBackward(blocks, threads, dev_ctx, dx_data, dout.data(), out.data(), N, dim, dim, dim_log2); } else if (dim % 2 == 0) { SwitchWarpSoftmaxBackward(blocks, threads, dev_ctx, dx_data, dout.data(), out.data(), N, dim, dim, dim_log2); } else { SwitchWarpSoftmaxBackward(blocks, threads, dev_ctx, dx_data, dout.data(), out.data(), N, dim, dim, dim_log2); } } else { LaunchSoftmaxBackwardCudnnKernel( dev_ctx, out, dout, axis, LogMode, dx); } } else { LaunchNormalSoftmaxBackward( dev_ctx, dx_data, dout.data(), out.data(), N, dim, D); } } } // namespace phi