- api : abs backward : abs_grad extra : attrs : [bool use_cudnn = false, bool use_mkldnn = false] - api : addmm backward : addmm_grad extra : attrs : [bool use_mkldnn = false] - api : affine_grid backward : affine_grid_grad extra : attrs : [bool use_cudnn = true] - api : angle backward : angle_grad extra : attrs : [bool use_cudnn = false, bool use_mkldnn = false] - api : atan2 inputs : {x : X1, y : X2} outputs : out : Out - api : batch_norm backward : batch_norm_grad extra : attrs : [bool use_mkldnn = false, bool fuse_with_relu = false] - api : bernoulli inputs : x : X outputs : out : Out - api : bicubic_interp (bicubic_interp_v2) backward : bicubic_interp_grad (bicubic_interp_v2_grad) extra : attrs : [bool use_mkldnn = false] - api : bilinear_interp (bilinear_interp_v2) backward : bilinear_interp_grad (bilinear_interp_v2_grad) extra : attrs : [bool use_mkldnn = false] - api : cholesky inputs : x : X outputs : out : Out - api : cholesky_solve inputs : {x : X, y : Y} outputs : out : Out - api : clip backward : clip_grad extra : attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32"] - api : concat backward : concat_grad extra : attrs : [bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32"] - api : conv2d backward : conv2d_grad extra : attrs : [bool is_test = false, bool use_cudnn = true, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false, str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false, bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f, float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false] - api : conv2d_fusion extra : attrs : [bool is_test = false, bool use_cudnn = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false, str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false, bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f, float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false] - api : conv2d_transpose backward : conv2d_transpose_grad extra : attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, bool force_fp32_output = false, str mkldnn_data_type = "float32", bool fuse_relu = false, str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()] - api : conv3d backward : conv3d_grad extra : attrs : [bool is_test = false, bool use_cudnn = true, bool use_mkldnn = false, str mkldnn_data_type = "float32", bool fuse_relu = false, str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false, bool fuse_residual_connection = false, bool force_fp32_output = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false] - api : conv3d_transpose backward : conv3d_transpose_grad extra : attrs : [bool use_cudnn = true, bool use_mkldnn = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()] - api : cross inputs : {x : X, y : Y} attrs : axis : dim outputs : out : Out - api : data_norm backward : data_norm_grad extra : attrs : [bool use_mkldnn = false] - api : depthwise_conv2d backward : depthwise_conv2d_grad extra : attrs : [bool is_test = false, bool fuse_relu_before_depthwise_conv = false, bool use_mkldnn = false, bool use_quantizer = false, str mkldnn_data_type = "float32", bool fuse_relu = false, str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, bool use_addto = false, bool fuse_residual_connection = false, float Scale_in = 1.0f, float Scale_out = 1.0f, float Scale_in_eltwise = 1.0f, 'float[] Scale_weights = {1.0f}', bool force_fp32_output = false, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB(), bool exhaustive_search = false] - api : depthwise_conv2d_transpose backward : depthwise_conv2d_transpose_grad extra : attrs : [bool is_test = false, bool use_cudnn = false, bool use_mkldnn = false, bool force_fp32_output = false, str mkldnn_data_type = "float32", bool fuse_relu = false, str fuse_activation = "", float fuse_alpha = 0.0f, float fuse_beta = 0.0f, int workspace_size_MB = platform::GetDefaultConvWorkspaceSizeLimitMB()] - api : diag (diag_v2) backward : diag_grad (diag_v2_grad) inputs : x : X outputs : out : Out - api : diagonal inputs : x : Input outputs : out : Out - api : digamma inputs : x : X outputs : out : Out - api : dist inputs : {x : X, y : Y} outputs : out : Out - api : dot inputs : {x : X, y : Y} outputs : out : Out - api : dropout backward : dropout_grad extra : attrs : [bool fix_seed = false, int seed = 0] - api : dropout_nd backward : dropout_nd_grad extra : attrs : [bool fix_seed = false, int seed = 0] - api : erf inputs : x : X outputs : out : Out - api : erfinv inputs : x : X outputs : out : Out - api : fft_c2c inputs: {x: X} outputs: {out: Out} - api : fft_c2r inputs: {x: X} outputs: {out: Out} - api : fft_r2c inputs: {x: X} outputs: {out: Out} - api : gelu backward : gelu_grad extra : attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool use_cudnn = false] - api : grid_sampler backward : grid_sampler_grad extra : attrs : [bool use_cudnn = true] - api : gru backward : gru_grad extra : attrs : [bool is_test = false] - api : inplace_abn backward : inplace_abn_grad extra : attrs : [bool use_mkldnn = false, bool fuse_with_relu = false] - api : layer_norm backward : layer_norm_grad extra : attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false] - api : lgamma inputs : x : X outputs : out : Out - api : linear_interp (linear_interp_v2) backward : linear_interp_grad (linear_interp_v2_grad) extra : attrs : [bool use_mkldnn = false] - api : log_softmax backward : log_softmax_grad extra : attrs : [bool use_mkldnn = false] - api : lrn backward : lrn_grad extra : attrs : [bool use_mkldnn = false, bool is_test = false] - api : mv inputs : {x : X, vec : Vec} outputs : out : Out - api : nearest_interp (nearest_interp_v2) backward : nearest_interp_grad (nearest_interp_v2_grad) extra : attrs : [bool use_mkldnn = false] - api : pad2d backward : pad2d_grad extra : attrs : [bool use_mkldnn = false] - api : pad3d backward : pad3d_grad extra : attrs : [bool use_mkldnn = false] - api : partial_sum backward : partial_sum_grad extra : attrs : [bool use_mkldnn = false] - api : poisson inputs : x : X outputs : out : Out - api : prelu backward : prelu_grad extra : attrs : [bool use_mkldnn = false, str mkldnn_data_type = "float32", bool is_test = false] - api : renorm backward : renorm_grad extra : attrs : [bool use_mkldnn = false, bool use_cudnn = false] - api : solve inputs : {x : X, y : Y} outputs : out : Out - api : stack backward : stack_grad extra : attrs : [bool use_mkldnn = false] - api : sync_batch_norm backward : sync_batch_norm_grad extra : attrs : [bool use_mkldnn = false, bool fuse_with_relu = false] - api : trace inputs : x : Input outputs : out : Out - api : trilinear_interp (trilinear_interp_v2) backward : trilinear_interp_grad (trilinear_interp_v2_grad) extra : attrs : [bool use_mkldnn = false] - api : trunc inputs : x : X outputs : out : Out