# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import unittest import numpy as np import paddle import paddle.jit.dy2static as _jst from paddle import fluid from paddle.jit.dy2static.convert_call_func import CONVERSION_OPTIONS from paddle.jit.dy2static.utils import func_to_source_code SEED = 2020 np.random.seed(SEED) # Situation 1 : test recursive call # Use a decorator to test exception @paddle.jit.to_static def dyfunc_with_if(x_v): if paddle.mean(x_v).numpy() > 5: x_v = x_v - 1 else: x_v = x_v + 1 return x_v @paddle.jit.to_static def nested_func(x_v): x_v = fluid.dygraph.to_variable(x_v) def fn1(): return x_v res = fn1() return res @paddle.jit.to_static def dyfunc_with_third_library_logging(x_v): logging.info('test dyfunc_with_third_library_logging') if paddle.mean(x_v).numpy() > 5: x_v = x_v - 1 else: x_v = x_v + 1 return x_v class A: @staticmethod def add(a, b): """ dygraph mode, return a numpy object. static graph mode, return a variable object. """ return paddle.to_tensor(a.numpy() + b.numpy()) @paddle.jit.to_static def dyfunc_with_staticmethod(x_v): a = A() return a.add(x_v, x_v) class TestRecursiveCall1(unittest.TestCase): def setUp(self): self.input = np.random.random([10, 16]).astype('float32') self.place = ( fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) self.init_test_func() def init_test_func(self): self.dyfunc = nested_func def get_dygraph_output(self): paddle.jit.enable_to_static(False) with fluid.dygraph.guard(): res = self.dyfunc(self.input).numpy() return res def get_static_output(self): paddle.jit.enable_to_static(True) with fluid.dygraph.guard(): res = self.dyfunc(self.input).numpy() return res def test_transformed_static_result(self): static_res = self.get_static_output() dygraph_res = self.get_dygraph_output() np.testing.assert_allclose( dygraph_res, static_res, rtol=1e-05, err_msg='dygraph res is {}\nstatic_res is {}'.format( dygraph_res, static_res ), ) lambda_fun = lambda x: x class MyConvLayer(paddle.nn.Layer): def __init__(self): super().__init__() self._conv = paddle.nn.Conv2D( in_channels=3, out_channels=2, kernel_size=3, weight_attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.99) ), bias_attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.5) ), ) @paddle.jit.to_static def forward(self, inputs): y = dyfunc_with_if(inputs) y = lambda_fun(y) y = self.dymethod(y) return y @paddle.jit.to_static def dymethod(self, x_v): x_v = paddle.assign(x_v) return x_v class MyLayer(paddle.nn.Layer): def __init__(self): super().__init__() self.conv = MyConvLayer() self.fc = paddle.nn.Linear( in_features=5, out_features=1, weight_attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.99) ), bias_attr=paddle.ParamAttr( initializer=paddle.nn.initializer.Constant(value=0.5) ), ) self.act = paddle.nn.ReLU() @paddle.jit.to_static def forward(self, inputs): h = self.conv(inputs) out = self.fc(h) return self.act(out) class TestRecursiveCall2(unittest.TestCase): def setUp(self): self.input = np.random.random((1, 3, 3, 5)).astype('float32') self.place = ( fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) self.set_func() def set_func(self): self.dygraph_func = MyLayer() def _run(self): with fluid.dygraph.guard(): data = fluid.dygraph.to_variable(self.input) res = self.dygraph_func(data) return res.numpy() def get_dygraph_output(self): paddle.jit.enable_to_static(False) return self._run() def get_static_output(self): paddle.jit.enable_to_static(True) return self._run() def test_transformed_static_result(self): dygraph_res = self.get_dygraph_output() static_res = self.get_static_output() np.testing.assert_allclose(dygraph_res, static_res, rtol=1e-05) class TestThirdPartyLibrary(TestRecursiveCall2): def set_func(self): self.dygraph_func = dyfunc_with_third_library_logging class TestStaticMethod(TestRecursiveCall2): def set_func(self): self.dygraph_func = dyfunc_with_staticmethod # Situation 2 : test not_to_static class NotToStaticHelper(paddle.nn.Layer): def __init__(self): super().__init__() def sum(self, x): if x.shape[0] > 1: res = x + 1 res = paddle.sum(x) return res def outer(self, x): res = self.sum(x) return res def inner(self, x): return self.outer(x) class TestNotToConvert(TestRecursiveCall2): def set_func(self): self.net = NotToStaticHelper() paddle.jit.not_to_static(self.net.sum) self.dygraph_func = paddle.jit.to_static(self.net.outer) def test_conversion_options(self): options = getattr(self.net.sum, CONVERSION_OPTIONS, None) self.assertIsNotNone(options) self.assertTrue(options.not_convert) def test_code(self): # check 'if statement' is not converted self.assertIn( "if x.shape[0] > 1", func_to_source_code(_jst.Call(self.net.sum)) ) class TestNotToConvert2(TestRecursiveCall2): def set_func(self): self.net = NotToStaticHelper() # for to_static(not_to_static(function)) == enable_static paddle.jit.not_to_static(self.net.sum) self.dygraph_func = paddle.jit.to_static(self.net.sum) def test_conversion_options(self): options = getattr(self.net.sum, CONVERSION_OPTIONS, None) self.assertIsNotNone(options) self.assertTrue(options.not_convert) def test_code(self): # check 'if statement' is not converted self.assertIn("if x.shape[0] > 1", self.dygraph_func.code) # Situation 3 : test to_static for paddle api @paddle.jit.not_to_static def forward(self, x): if x.shape[0] > 1: x = x + 1 return x class TestConvertPaddleAPI(unittest.TestCase): def test_functional_api(self): func = paddle.nn.functional.relu func = paddle.jit.to_static(func) self.assertNotIn("_jst.IfElse", func.code) self.assertIn("if in_dynamic_mode()", func.code) def test_class_api(self): bn = paddle.nn.SyncBatchNorm(2) paddle.jit.to_static(bn) self.assertNotIn("_jst.IfElse", bn.forward.code) self.assertIn("if in_dynamic_mode()", bn.forward.code) def test_class_patch_api(self): paddle.nn.SyncBatchNorm.forward = forward bn = paddle.nn.SyncBatchNorm(2) paddle.jit.to_static(bn) self.assertNotIn("_jst.IfElse", bn.forward.code) self.assertIn("if x.shape[0] > 1", bn.forward.code) if __name__ == '__main__': unittest.main()