# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import random from op_test import OpTest def gen_match_and_neg_indices(num_prior, gt_lod, neg_lod): if len(gt_lod) != len(neg_lod): raise AssertionError("The input arguments are illegal.") batch_size = len(gt_lod) - 1 match_indices = -1 * np.ones((batch_size, num_prior)).astype('int32') neg_indices = np.zeros((neg_lod[-1], 1)).astype('int32') for n in range(batch_size): gt_num = gt_lod[n + 1] - gt_lod[n] ids = random.sample([i for i in range(num_prior)], gt_num) match_indices[n, ids] = [i for i in range(gt_num)] ret_ids = set([i for i in range(num_prior)]) - set(ids) s = neg_lod[n] e = neg_lod[n + 1] l = e - s neg_ids = random.sample(ret_ids, l) neg_indices[s:e, :] = np.array(neg_ids).astype('int32').reshape(l, 1) return match_indices, neg_indices def target_assign(encoded_box, gt_label, match_indices, neg_indices, gt_lod, neg_lod, mismatch_value): batch_size, num_prior = match_indices.shape # init target bbox trg_box = np.zeros((batch_size, num_prior, 4)).astype('float32') # init weight for target bbox trg_box_wt = np.zeros((batch_size, num_prior, 1)).astype('float32') # init target label trg_label = np.ones((batch_size, num_prior, 1)).astype('int32') trg_label = trg_label * mismatch_value # init weight for target label trg_label_wt = np.zeros((batch_size, num_prior, 1)).astype('float32') for i in range(batch_size): cur_indices = match_indices[i] col_ids = np.where(cur_indices > -1) col_val = cur_indices[col_ids] gt_start = gt_lod[i] # target bbox for v, c in zip(col_val + gt_start, col_ids[0].tolist()): trg_box[i][c][:] = encoded_box[v][c][:] # weight for target bbox trg_box_wt[i][col_ids] = 1.0 trg_label[i][col_ids] = gt_label[col_val + gt_start] trg_label_wt[i][col_ids] = 1.0 # set target label weight to 1.0 for the negative samples if neg_indices is not None: neg_ids = neg_indices[neg_lod[i]:neg_lod[i + 1]] trg_label_wt[i][neg_ids] = 1.0 return trg_box, trg_box_wt, trg_label, trg_label_wt class TestTargetAssginFloatType(OpTest): def setUp(self): self.op_type = "target_assign" num_prior = 120 num_class = 21 gt_lod = [0, 5, 11, 23] neg_lod = [0, 4, 7, 13] mismatch_value = 0 batch_size = len(gt_lod) - 1 num_gt = gt_lod[-1] encoded_box = np.random.random((num_gt, num_prior, 4)).astype('float32') gt_label = np.random.randint( num_class, size=(num_gt, 1)).astype('int32') match_indices, neg_indices = gen_match_and_neg_indices(num_prior, gt_lod, neg_lod) out, out_wt, _, _ = target_assign(encoded_box, gt_label, match_indices, neg_indices, gt_lod, neg_lod, mismatch_value) # assign regression targets x = encoded_box self.inputs = { 'X': (x, [gt_lod]), 'MatchIndices': match_indices, } self.attrs = {'mismatch_value': mismatch_value} self.outputs = { 'Out': out, 'OutWeight': out_wt, } def test_check_output(self): self.check_output() class TestTargetAssginIntType(OpTest): def setUp(self): self.op_type = "target_assign" num_prior = 120 num_class = 21 gt_lod = [0, 5, 11, 23] neg_lod = [0, 4, 7, 13] mismatch_value = 0 batch_size = len(gt_lod) - 1 num_gt = gt_lod[-1] encoded_box = np.random.random((num_gt, num_prior, 4)).astype('float32') gt_label = np.random.randint( num_class, size=(num_gt, 1)).astype('int32') match_indices, neg_indices = gen_match_and_neg_indices(num_prior, gt_lod, neg_lod) _, _, out, out_wt, = target_assign(encoded_box, gt_label, match_indices, neg_indices, gt_lod, neg_lod, mismatch_value) # assign cassification argets x = np.reshape(gt_label, (num_gt, 1, 1)) self.inputs = { 'X': (x, [gt_lod]), 'MatchIndices': match_indices, 'NegIndices': (neg_indices, [neg_lod]), } self.attrs = {'mismatch_value': mismatch_value} self.outputs = { 'Out': out, 'OutWeight': out_wt, } def test_check_output(self): self.check_output() if __name__ == '__main__': unittest.main()