// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once // CUDA and HIP use same api #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) || \ defined(PADDLE_WITH_XPU_KP) #include "paddle/phi/kernels/funcs/reduce_function.h" namespace phi { template class ReduceOp, template class TransformOp> void Reduce(const KPDevice& dev_ctx, const DenseTensor& x, bool reduce_all, const std::vector& dims, bool keep_dim, DataType out_dtype, DenseTensor* out, bool is_mean = false) { std::vector reduce_dims = phi::funcs::details::GetReduceDim(dims, x.dims().size(), reduce_all); int reduce_num = 1; for (auto i : reduce_dims) { reduce_num *= (x.dims())[i]; } if (out_dtype != phi::DataType::UNDEFINED && out_dtype != x.dtype()) { auto tmp_tensor = phi::Cast(dev_ctx, x, out_dtype); PD_VISIT_BOOL_AND_FLOATING_AND_COMPLEX_AND_3_TYPES( phi::DataType::INT32, phi::DataType::INT64, phi::DataType::FLOAT16, out_dtype, "ReduceKernel", ([&] { using MPType = typename kps::details::MPTypeTrait::Type; phi::funcs::ReduceKernel>( dev_ctx, tmp_tensor, out, TransformOp(reduce_num), reduce_dims, is_mean); })); } else { using MPType = typename kps::details::MPTypeTrait::Type; phi::funcs::ReduceKernel>( dev_ctx, x, out, TransformOp(reduce_num), reduce_dims, is_mean); } } } // namespace phi #endif