- op : adam_ version : - checkpoint : Upgrade adam add 1 attribute [multi_precision]. action : - add_attr : multi_precision comment : (bool) Whether to use multi-precision during weight updating. default : "false" - checkpoint : Upgrade adam, add 1 dispensable input [EpsilonTensor]. action : - add_input : EpsilonTensor comment : If provided, Adam will use this as epsilon, this has a higher priority than attr(epsilon). For better performance in npu kernel. - checkpoint : Upgrade adam, add 1 attribute [use_global_beta_pow]. action : - add_attr : use_global_beta_pow comment : If true, Adam will use global beta_pow for whole model instead of creating beta_pow for each parameter. In that case, the outputs(Beta1PowOut, Beta2PowOut) will not be used in adam op, and beta_pow will be updated after all adam op in the model. default : "false" - checkpoint : Upgrade adam, add 1 dispensable input [SkipUpdate]. action : - add_input : SkipUpdate comment : If the value is true, Adam will skip the update. - op : affine_grid version : - checkpoint : Compatible upgrade of affine_grid, add a new attribute [align_corners]. action : - add_attr : align_corners comment : Whether to align the corners of input and output. default : "true" - op : allclose version : - checkpoint : Upgrade allclose, add two new inputs [Rtol] and [Atol]. action: - add_input : Rtol comment : The added input 'Rtol' is not dispensable. - add_input : Atol comment : The added input 'Atol' is not dispensable. - checkpoint : Delete two float attributes [rtol] and [atol], then add 2 string attributes [atol, rtol]. Don't be surprised. This is because float cannot represent hight-precision floating-point values, and our framework doesn't support the use of double attributes. As a result, string instead of double is used here to represent high-precision floating-point values. action : - add_attr : rtol comment : The relative tolerance. Default::math:`1e-5` . default : std::string("1e-5") - delete_attr : rtol comment : The attribute 'rtol' is deleted. The reason why it is deleted is that attributes do not support a float64 value and it is changed to a tensor. - add_attr : atol comment : (string) The absolute tolerance. Default::math:`1e-8` . default : std::string("1e-5") - delete_attr : atol comment : The attribute 'atol' is deleted. The reason why it is deleted is that attributes do not support a float64 value and it is changed to a tensor. - op : auc version : - checkpoint : Upgrade auc, add a new input [InsTagWeight]. action : - add_input : ValueTensor comment : In order to support multi-tag task. - op : clip version : - checkpoint : Upgrade clip add a new input [Min] action : - add_input : Min comment : Pass the mix, min value as input, not attribute. Min is dispensable. - add_input : Max comment : Pass the mix, min value as input, not attribute. Max is dispensable. - op : coalesce_tensor version : - checkpoint : "Upgrade coalesce_tensor: add a new attribute [use_align]." action : - add_attr : use_align comment : In order to optionally take memory alignment into account when coalescing tensors. The default value is true to be compatible with before. default : "true" - checkpoint : "Upgrade coalesce_tensor: add a new attribute [align_size]." action : - add_attr : align_size comment : In order to optionally take memory alignment into account when coalescing tensors. The default value is -1 and use the default align_size of each place to be compatible with before. default : -1 - op : conv2d version : - checkpoint : Upgrade conv2d, add a new attribute [use_addto]. action : - add_attr : use_addto comment : In order to support new feature (inplace addto strategy) for gradient accumulation. default : "false" - op : conv2d_transpose version : - checkpoint : Upgrade convtranspose add a new attribute [output_padding]. action : - add_attr : output_padding comment : In order to add additional size to one side of each dimension in the output. default : "std::vector{}" - checkpoint : Upgrade conv2d transpose to add a new attributes [force_fp32_output, mkldnn_data_type]. action : - add_attr : force_fp32_output comment : Force BF16 kernel output FP32, only used in MKL-DNN BF16. default : "false" - add_attr : mkldnn_data_type comment : Data type of mkldnn kernel. default : "\"float32\"" - op : conv3d version : - checkpoint : Upgrade conv3d, add a new attribute [use_addto]. action : - add_attr : use_addto comment : In order to support new feature (inplace addto strategy) for gradient accumulation. default : "false" - op : conv3d_transpose version : - checkpoint : Upgrade convtranspose add a new attribute [output_padding]. action : - add_attr : output_padding comment : In order to add additional size to one side of each dimension in the output. default : "std::vector{}" - op : conv_transpose version : - checkpoint : Upgrade convtranspose add a new attribute [output_padding]. action : - add_attr : output_padding comment : In order to add additional size to one side of each dimension in the output. default : "std::vector{}" - op : cumsum version : - checkpoint : Upgrade cumsum add a new attribute [flatten]. action : - add_attr : flatten comment : In order to compute the cumsum over the flattened array when the argument `axis` in python API is None. default : "false" - op : depthwise_conv2d version : - checkpoint : Upgrade depthwise_conv2d, add a new attribute [use_addto]. action : - add_attr : use_addto comment : In order to support new feature (inplace addto strategy) for gradient accumulation. default : "false" - op : depthwise_conv2d_transpose version : - checkpoint : Upgrade convtranspose add a new attribute [output_padding]. action : - add_attr : output_padding comment : In order to add additional size to one side of each dimension in the output. default : "std::vector{}" - op : elementwise_floordiv version : - checkpoint : Register elementwise_floordiv for adding the attribute of Scale_y action : - add_attr : Scale_y comment : In order to support the function of scaling the input Y when using the operator of elementwise_floordiv. default : 1.0 - op : elementwise_max version : - checkpoint : Register elementwise_max for adding the attribute of Scale_y. action : - add_attr : Scale_y comment : In order to support the function of scaling the input Y when using the operator of elementwise_max. default : 1.0 - op : elementwise_min version : - checkpoint : Register elementwise_min for adding the attribute of Scale_y. action : - add_attr : Scale_y comment : In order to support the function of scaling the input Y when using the operator of elementwise_min. default : 1.0 - op : elementwise_mod version : - checkpoint : Register elementwise_mod for adding the attribute of Scale_y action : - add_attr : Scale_y comment : In order to support the function of scaling the input Y when using the operator of elementwise_mod. default : "false" - op : elementwise_pow version : - checkpoint : Register elementwise_pow for adding the attribute of Scale_y action : - add_attr : Scale_y comment : In order to support the function of scaling the input Y when using the operator of elementwise_pow. default : 1.0 - op : embedding version : - checkpoint : Upgrade flip, add new attr [axis] and delete attr [dims] action : - fix_bug : fix_bug comment : lookup_table_v2 support input type `int64`; after support input type `int32/int64` - op : equal version : - checkpoint : Upgrade compare ops, add a new attribute [force_cpu] action : - modify_attr : force_cpu comment : In order to force fill output variable to gpu memory. default : "false" - op : expand_as_v2 version : - checkpoint : fix expand_as_v2 and add new input [Y]. action : - add_input : Y comment : Expand X according to the shape of Y. - op : flip version : - checkpoint : Upgrade flip, add new attr [axis] and delete attr [dims] action : - add_attr : axis comment : The added attr 'axis' doesn't set default value default : paddle::none - delete_attr : dims comment : The attr 'dims' is deleted. - op : gather version : - checkpoint : Upgrade gather, add a new input [Axis] action : - add_input : Axis comment : Specify the axis of gather operation. - op : gaussian_random version : - checkpoint : Upgrade gaussian_random add new inputs [ShapeTensor] and [ShapeTensorList] and modify the attribute of [shape] action : - add_input : ShapeTensor comment : The output shape supports Tensor type. ShapeTensor is dispensable. - add_input : ShapeTensorList comment : The output shape supports list filled with Tensor. ShapeTensorList is dispensable. - modify_attr : shape comment : "The arg 'default_value' of attr 'shape' is changed: from 'None' to '{}'." default : std::vector{} - op : generate_proposals version : - checkpoint : Registe generate_proposals_v2 for adding the attribute of pixel_offset action : - add_attr : pixel_offset comment : If true, im_shape pixel offset is 1. default : "true" - op : greater_equal version : - checkpoint : Upgrade compare ops, add a new attribute [force_cpu] action : - modify_attr : force_cpu comment : In order to force fill output variable to gpu memory. default : "false" - op : greater_than version : - checkpoint : Upgrade compare ops, add a new attribute [force_cpu] action : - modify_attr : force_cpu comment : In order to force fill output variable to gpu memory. default : "false" - op : grid_sample version : - checkpoint : Upgrade grid_sampler add a new attribute [mode] action : - add_attr : mode comment : In order to specify interpolation mode default : std::string("bilinear") - op : instance_norm version : - checkpoint : Change dispensable of attribute from False to True in instance_norm. action : - modify_attr : Bias comment : "The arg 'dispensable' of Input 'Bias' is changed: from 'False' to 'True'." default : "true" - modify_attr : Scale comment : "The arg 'dispensable' of Input 'Scale' is changed: from 'False' to 'True'." default : "true" - op : lamb version : - checkpoint : Upgrade lamb, add two new outputs [Beta1PowOut] and [Beta2PowOut]. action : - add_output : Beta1PowOut comment : The Output beta1 power accumulator. 'Beta1PowOut' is dispensable. - add_output : Beta2PowOut comment : The Output beta2 power accumulator. 'Beta2PowOut' is dispensable. - op : less_equal version : - checkpoint : Upgrade compare ops, add a new attribute [force_cpu] action : - modify_attr : force_cpu comment : In order to force fill output variable to gpu memory. default : "false" - op : less_than version : - checkpoint : Upgrade compare ops, add a new attribute [force_cpu] action : - modify_attr : force_cpu comment : In order to force fill output variable to gpu memory. default : "false" - op : linspace version : - checkpoint : Upgrade linspace to add a new attribute [dtype] action : - add_attr : dtype comment : In order to change output data type default : 5 - op : lstsq version : - checkpoint : Upgrade lstsq, add 1 outputs [Residuals]. action : - add_output : Residuals comment : Output tensor of lstsq operator, meaning the squared residuals of the calculated solutions. - op : matrix_nms version : - checkpoint : Upgrade matrix_nms, add a new output [RoisNum]. action : - add_output : RoisNum comment : The number of RoIs in each image. - op : momentum version : - checkpoint : Upgrade momentum add 4 attributes [regularization_method, regularization_coeff, multi_precision, rescale_grad]. action : - add_input : MasterParam comment : FP32 master weight for AMP. - add_output : MasterParamOut comment : The updated FP32 master weight for AMP. It shared memory with Input(MasterParam). - add_attr : regularization_method comment : (string) regularization_method, right now only support l2decay or none default : std::string("") - add_attr : regularization_coeff comment : (float) regularization_coeff default : 0.0 - add_attr : multi_precision comment : (bool) Whether to use multi-precision during weight updating. default : "false" - add_attr : rescale_grad comment : (float) Multiply the gradient with `rescale_grad` before updating. Often choose to be `1.0/batch_size`. default : 1.0 - op : not_equal version : - checkpoint : Upgrade compare ops, add a new attribute [force_cpu] action : - modify_attr : force_cpu comment : In order to force fill output variable to gpu memory. default : "false" - op : p_norm version : - checkpoint : Upgrade p_norm, add 1 attribute [asvector]. action : - add_attr : asvector comment : Compute as vector when axis is None and input is matrix. default : "false" - op : pixel_shuffle version : - checkpoint : Compatible upgrade of pixel_shuffle, add a new attribute [data_format] action : - add_attr : data_format comment : Specify the data format of the input data default : "true" - op : roi_align version : - checkpoint : Incompatible upgrade of input [RpnRoisLod]) action : - delete_input : RpnRoisLod comment : Delete RpnRoisLod due to incorrect input name and it is not used in object detection models yet - checkpoint : Upgrade roi_pool add a new input [RoisNum] action : - add_input : RoisNum comment : The number of RoIs in each image. RoisNum is dispensable - checkpoint : Upgrade roi_align add a new input [aligned] action : - add_attr : aligned comment : If true, pixel shift it by -0.5 for align more perfectly. default : "false" - op : roi_pool version : - checkpoint : Incompatible upgrade of input [RpnRoisLod] action : - delete_input : RpnRoisLod comment : Delete RpnRoisLod due to incorrect input name and it is not used in object detection models yet. - checkpoint : Upgrade roi_pool add a new input [RoisNum] action : - add_input : RoisNum comment : The number of RoIs in each image. RoisNum is dispensable - op : roll version : - checkpoint : Upgrade roll add 1 attribute [axis], delete 1 attribute[dims]. action : - add_attr : axis comment : Axis along which to roll. It must have the same size with shifts, or size = 0. default : std::vector() - delete_attr : dims comment : Dims along which to roll. It must have the same size with shifts, or size = 0 - checkpoint : Upgrade roll add a dispensable input "ShiftsTensor" action : - add_input : ShiftsTensor comment : The number of places by which the elements of the tensor are shifted. - op : softmax_with_cross_entropy version : - checkpoint : Add a new attribute [use_softmax] action : - add_attr : use_softmax comment : A flag to indicate whether to do softmax default : "true" - op : trace version : - checkpoint : Upgrade trace add a new attribute [axis2] action : - add_attr : axis1 comment : The added attribute 'axis1' is not yet registered. default : std::vector{0.0f} - add_attr : axis2 comment : The added attribute 'axis2' is not yet registered. default : std::vector{1.0f} - delete_attr : dim1 comment : The attribute 'dim1' is not recommend according to the specification 2.0. - delete_attr : dim2 comment : The attribute 'dim2' is not recommend according to the specification 2.0. - op : unique_consecutive version : - checkpoint : Upgrade unique_consecutive, add 2 outputs [Indices, Counts] and 3 attribute [return_inverse, return_counts, axis]. action : - add_output : Counts comment : The counts for each unique element. - add_attr : return_inverse comment : If True, also return the indices for where elements in the original input ended up in the returned unique tensor. default : "false" - add_attr : return_counts comment : If True, also return the counts for each unique element. default : "false" - add_attr : axis comment : The axis to apply unique. If None, the input will be flattened. default : std::vector{} - op : yolo_box version : - checkpoint : Upgrade yolo box to add new attribute [iou_aware, iou_aware_factor]. action : - add_attr : iou_aware comment : Whether use iou aware. default : "false" - add_attr : iou_aware_factor comment : iou aware factor. default : 0.5f