/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/distributed/ps/service/brpc_utils.h" #include #include #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace framework { class Variable; } // namespace framework } // namespace paddle namespace phi { class DenseTensor; } // namespace phi namespace paddle { namespace distributed { framework::proto::VarType::Type VarMessageToVarType( VariableMessage::Type type) { switch (type) { case VariableMessage::FP32: return framework::proto::VarType::FP32; // NOLINT case VariableMessage::FP64: return framework::proto::VarType::FP64; // NOLINT case VariableMessage::INT32: return framework::proto::VarType::INT32; // NOLINT case VariableMessage::INT64: return framework::proto::VarType::INT64; // NOLINT case VariableMessage::BOOL: return framework::proto::VarType::BOOL; // NOLINT default: PADDLE_THROW(platform::errors::InvalidArgument( "VarMessageToVarType:Unsupported type %d", type)); } } void SerializeToMultiVarMsgAndIOBuf( const std::string& message_name, const std::vector& send_var_name_val, const std::vector& recv_var_name_val, const platform::DeviceContext& ctx, const framework::Scope* scope, MultiVarMsg* request, butil::IOBuf* iobuf) { // 1. message_name request->set_message_name(message_name); // 2. var_names for (auto& send_var_name : send_var_name_val) { request->add_send_var_names(send_var_name); } for (auto& recv_var_name : recv_var_name_val) { request->add_recv_var_names(recv_var_name); } // 3. VarMessage for (auto& send_var_name : send_var_name_val) { auto* send_var_msg = request->add_var_messages(); butil::IOBuf temp_iobuf; send_var_msg->set_varname(send_var_name); framework::Variable* var = scope->FindVar(send_var_name); if (var->IsType()) { SerializeLodTensor(var, ctx, send_var_msg, &temp_iobuf); } else if (var->IsType()) { SerializeSelectedRows(var, ctx, send_var_msg, &temp_iobuf); } iobuf->append(temp_iobuf); } } void SerializeLodTensor(framework::Variable* var, const platform::DeviceContext& ctx, VarMsg* var_msg, butil::IOBuf* iobuf) { auto* tensor = var->GetMutable(); var_msg->set_type(::paddle::distributed::LOD_TENSOR); const framework::LoD lod = tensor->lod(); if (lod.size() > 0) { var_msg->set_lod_level(lod.size()); for (auto& each : lod) { VarMsg::LodData* lod_inner = var_msg->add_lod(); for (auto& d : each) { lod_inner->add_lod_data(d); } } } var_msg->set_data_type(static_cast( framework::TransToProtoVarType(tensor->dtype()))); for (auto& dim : phi::vectorize(tensor->dims())) { var_msg->add_dims(dim); } // IO Buffer if (platform::is_cpu_place(tensor->place())) { auto data_len = tensor->numel() * phi::SizeOf(tensor->dtype()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(tensor->data()), data_len); } else { #ifdef PADDLE_WITH_CUDA char* temp_ptr = new char[tensor->numel() * phi::SizeOf(tensor->dtype())]; // NOLINT auto stream = reinterpret_cast(ctx).stream(); memory::Copy( platform::CPUPlace(), temp_ptr, tensor->place(), tensor->data(), tensor->numel() * framework::SizeOfType( framework::TransToProtoVarType(tensor->dtype())), stream); auto data_len = tensor->numel() * phi::SizeOf(tensor->dtype()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(temp_ptr), data_len); delete[] temp_ptr; #endif } } void SerializeSelectedRows(framework::Variable* var, const platform::DeviceContext& ctx, VarMsg* var_msg, butil::IOBuf* iobuf) { phi::SelectedRows* slr = var->GetMutable(); auto* tensor = slr->mutable_value(); auto* rows = slr->mutable_rows(); var_msg->set_type(::paddle::distributed::SELECTED_ROWS); var_msg->set_slr_height(slr->height()); auto* var_data = var_msg->mutable_data(); var_data->clear(); var_data->resize(rows->size() * sizeof(int64_t)); char* data_ptr = const_cast(var_data->data()); memcpy(data_ptr, &((*rows)[0]), rows->size() * sizeof(int64_t)); var_msg->set_data_type(static_cast( framework::TransToProtoVarType(tensor->dtype()))); for (auto& dim : phi::vectorize(tensor->dims())) { var_msg->add_dims(dim); } // IO Buffer if (platform::is_cpu_place(tensor->place())) { auto data_len = tensor->numel() * phi::SizeOf(tensor->dtype()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(tensor->data()), data_len); } else { #ifdef PADDLE_WITH_CUDA char* temp_ptr = new char[tensor->numel() * phi::SizeOf(tensor->dtype())]; // NOLINT auto stream = reinterpret_cast(ctx).stream(); memory::Copy( platform::CPUPlace(), temp_ptr, tensor->place(), tensor->data(), tensor->numel() * framework::SizeOfType( framework::TransToProtoVarType(tensor->dtype())), stream); auto data_len = tensor->numel() * phi::SizeOf(tensor->dtype()); iobuf->append(reinterpret_cast(&data_len), 8); iobuf->append(reinterpret_cast(temp_ptr), data_len); delete[] temp_ptr; #endif } } void DeserializeFromMultiVarMsgAndIOBuf(const MultiVarMsg& multi_msg, const butil::IOBuf* iobuf, const platform::DeviceContext& ctx, framework::Scope* scope) { butil::IOBufBytesIterator io_buffer_itr(*iobuf); // size_t shard_buffer_remain = res_io_buffer.size(); for (int recv_var_index = 0; recv_var_index < multi_msg.send_var_names_size(); ++recv_var_index) { const auto& msg = multi_msg.var_messages(recv_var_index); auto* var = scope->Var(msg.varname()); if (msg.type() == ::paddle::distributed::LOD_TENSOR) { DeserializeLodTensor(var, msg, io_buffer_itr, ctx); } else if (msg.type() == ::paddle::distributed::SELECTED_ROWS) { DeserializeSelectedRows(var, msg, io_buffer_itr, ctx); } } } void DeserializeFromMultiVarMsgAndIOBuf(const MultiVarMsg& multi_msg, const butil::IOBuf* iobuf, const platform::DeviceContext& ctx, const framework::Scope* scope) { butil::IOBufBytesIterator io_buffer_itr(*iobuf); // size_t shard_buffer_remain = res_io_buffer.size(); for (int recv_var_index = 0; recv_var_index < multi_msg.send_var_names_size(); ++recv_var_index) { const auto& msg = multi_msg.var_messages(recv_var_index); auto* var = scope->FindVar(msg.varname()); PADDLE_ENFORCE_NE(var, nullptr, platform::errors::InvalidArgument( "Not find variable %s in scope.", msg.varname())); if (msg.type() == ::paddle::distributed::LOD_TENSOR) { DeserializeLodTensor(var, msg, io_buffer_itr, ctx); } else if (msg.type() == ::paddle::distributed::SELECTED_ROWS) { DeserializeSelectedRows(var, msg, io_buffer_itr, ctx); } } } void DeserializeLodTensor(framework::Variable* var, const VarMsg& msg, butil::IOBufBytesIterator& io_buffer_itr, // NOLINT const platform::DeviceContext& ctx) { const auto place = ctx.GetPlace(); phi::DenseTensor* tensor = var->GetMutable(); std::vector vec_dim; for (auto& x : msg.dims()) { vec_dim.push_back(x); } tensor->Resize(phi::make_ddim(vec_dim)); framework::LoD lod; for (int i = 0; i < msg.lod_level(); ++i) { phi::Vector v; for (int j = 0; j < msg.lod(i).lod_data_size(); ++j) { v.push_back(msg.lod(i).lod_data(j)); } lod.push_back(v); } tensor->set_lod(lod); void* tensor_data = tensor->mutable_data( place, framework::TransToPhiDataType(VarMessageToVarType(msg.data_type()))); // IO Buffer if (platform::is_cpu_place(place)) { unsigned long data_len; // NOLINT io_buffer_itr.copy_and_forward((void*)(&data_len), 8); // NOLINT io_buffer_itr.copy_and_forward(tensor_data, data_len); } else if (platform::is_gpu_place(place)) { #ifdef PADDLE_WITH_CUDA unsigned long data_len; // NOLINT char* temp_ptr = new char[tensor->numel() * phi::SizeOf(tensor->dtype())]; // NOLINT io_buffer_itr.copy_and_forward((void*)(&data_len), 8); // NOLINT io_buffer_itr.copy_and_forward((void*)temp_ptr, data_len); // NOLINT auto stream = reinterpret_cast(ctx).stream(); memory::Copy(place, tensor_data, platform::CPUPlace(), (void*)temp_ptr, // NOLINT tensor->numel() * phi::SizeOf(tensor->dtype()), stream); delete[] temp_ptr; #endif } } void DeserializeSelectedRows( framework::Variable* var, const VarMsg& msg, butil::IOBufBytesIterator& io_buffer_itr, // NOLINT const platform::DeviceContext& ctx) { const auto place = ctx.GetPlace(); auto* slr = var->GetMutable(); phi::DenseTensor* tensor = slr->mutable_value(); slr->set_height(msg.slr_height()); std::vector tmp_rows(msg.dims()[0]); memcpy(tmp_rows.data(), msg.data().data(), msg.dims()[0] * sizeof(int64_t)); slr->set_rows(tmp_rows); std::vector vec_dim; for (auto& x : msg.dims()) { vec_dim.push_back(x); } tensor->Resize(phi::make_ddim(vec_dim)); void* tensor_data = tensor->mutable_data( place, framework::TransToPhiDataType(VarMessageToVarType(msg.data_type()))); // IO Buffer if (platform::is_cpu_place(place)) { unsigned long data_len; // NOLINT io_buffer_itr.copy_and_forward((void*)(&data_len), 8); // NOLINT io_buffer_itr.copy_and_forward(tensor_data, data_len); } else if (platform::is_gpu_place(place)) { #ifdef PADDLE_WITH_CUDA char* temp_ptr = new char[tensor->numel() * phi::SizeOf(tensor->dtype())]; // NOLINT unsigned long data_len; // NOLINT io_buffer_itr.copy_and_forward((void*)(&data_len), 8); // NOLINT io_buffer_itr.copy_and_forward(temp_ptr, data_len); auto stream = reinterpret_cast(ctx).stream(); memory::Copy(place, tensor_data, platform::CPUPlace(), temp_ptr, tensor->numel() * phi::SizeOf(tensor->dtype()), stream); delete[] temp_ptr; #endif } } std::string GetIntTypeEndpoint(const std::string& ip, const uint32_t& port) { // There are usually two forms of IP address: ip(int) / ip (hostname) // If there're some problem with DNS, or ip triggers the bug of Brpc // We will try to get the IP address of the domain name manually again std::string ip_port = ip + ":" + std::to_string(port); struct hostent* hp = NULL; hp = gethostbyname(ip.c_str()); if (NULL == hp) { LOG(ERROR) << "Brpc Start failed, ip_port= " << ip_port << " , Error infomation: " << hstrerror(h_errno); } int i = 0; char* int_ip = NULL; while (hp->h_addr_list[i] != NULL) { int_ip = inet_ntoa(*(struct in_addr*)hp->h_addr_list[i]); VLOG(3) << "Brpc Get host by name, host:" << ip << " -> ip: " << int_ip; break; } std::string str_ip = int_ip; std::string int_ip_port = str_ip + ":" + std::to_string(port); return int_ip_port; } } // namespace distributed } // namespace paddle