// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "gflags/gflags.h" #include "gtest/gtest.h" #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/place.h" DECLARE_bool(use_system_allocator); namespace paddle { namespace framework { static std::vector CreatePlaceList() { std::vector places; places.emplace_back(platform::CPUPlace()); #ifdef PADDLE_WITH_CUDA places.emplace_back(platform::CUDAPlace(0)); #endif return places; } template static bool CopySameTensorTestMain(const DDim &dims, const platform::Place &src_place, const platform::Place &dst_place, bool sync_copy) { FLAGS_use_system_allocator = true; // force to use system allocator // Step 1: create a cpu tensor and initialize it with random value; Tensor src_cpu_tensor; { src_cpu_tensor.Resize(dims); auto *src_ptr_cpu = src_cpu_tensor.mutable_data(platform::CPUPlace()); int64_t num = src_cpu_tensor.numel(); std::random_device rd; std::mt19937 gen(rd()); std::uniform_real_distribution dist(-1000, 1000); for (int64_t i = 0; i < num; ++i) { src_ptr_cpu[i] = dist(gen); } } // Step 2: copy the source tensor to dst place Tensor dst_cpu_tensor; { Tensor src_tensor; TensorCopySync(src_cpu_tensor, src_place, &src_tensor); // The source tensor and dst_tensor is the same if (sync_copy) { TensorCopySync(src_tensor, dst_place, &src_tensor); } else { TensorCopy(src_tensor, dst_place, &src_tensor); platform::DeviceContextPool::Instance().Get(src_place)->Wait(); platform::DeviceContextPool::Instance().Get(dst_place)->Wait(); } // Get the result cpu tensor TensorCopySync(src_tensor, platform::CPUPlace(), &dst_cpu_tensor); } const void *ground_truth_ptr = src_cpu_tensor.data(); const void *result_ptr = dst_cpu_tensor.data(); size_t byte_num = product(dims) * sizeof(T); return std::memcmp(ground_truth_ptr, result_ptr, byte_num) == 0; } TEST(test_tensor_copy, test_copy_same_tensor) { using DataType = float; auto dims = make_ddim({3, 4, 5}); auto places = CreatePlaceList(); for (auto &src_p : places) { for (auto &dst_p : places) { ASSERT_TRUE(CopySameTensorTestMain(dims, src_p, dst_p, true)); ASSERT_TRUE(CopySameTensorTestMain(dims, src_p, dst_p, false)); } } } } // namespace framework } // namespace paddle