# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: import all neural network related api under this directory, # including layers, linear, conv, rnn etc. from .layer.container import LayerList # noqa: F401 from .layer.container import ParameterList # noqa: F401 from .layer.container import Sequential # noqa: F401 from .clip import ClipGradByGlobalNorm # noqa: F401 from .clip import ClipGradByNorm # noqa: F401 from .clip import ClipGradByValue # noqa: F401 from .decode import BeamSearchDecoder # noqa: F401 from .decode import dynamic_decode # noqa: F401 from .layer.activation import CELU # noqa: F401 from .layer.activation import ELU # noqa: F401 from .layer.activation import GELU # noqa: F401 from .layer.activation import Tanh # noqa: F401 from .layer.activation import Hardshrink # noqa: F401 from .layer.activation import Hardswish # noqa: F401 from .layer.activation import Hardtanh # noqa: F401 from .layer.activation import PReLU # noqa: F401 from .layer.activation import ReLU # noqa: F401 from .layer.activation import ReLU6 # noqa: F401 from .layer.activation import SELU # noqa: F401 from .layer.activation import Silu # noqa: F401 from .layer.activation import LeakyReLU # noqa: F401 from .layer.activation import Sigmoid # noqa: F401 from .layer.activation import Hardsigmoid # noqa: F401 from .layer.activation import LogSigmoid # noqa: F401 from .layer.activation import Softmax # noqa: F401 from .layer.activation import Softmax2D # noqa: F401 from .layer.activation import Softplus # noqa: F401 from .layer.activation import Softshrink # noqa: F401 from .layer.activation import Softsign # noqa: F401 from .layer.activation import Swish # noqa: F401 from .layer.activation import Mish # noqa: F401 from .layer.activation import Tanhshrink # noqa: F401 from .layer.activation import ThresholdedReLU # noqa: F401 from .layer.activation import LogSoftmax # noqa: F401 from .layer.activation import Maxout # noqa: F401 from .layer.activation import RReLU # noqa: F401 from .layer.common import Pad1D # noqa: F401 from .layer.common import Pad2D # noqa: F401 from .layer.common import ZeroPad2D # noqa: F401 from .layer.common import Pad3D # noqa: F401 from .layer.common import CosineSimilarity # noqa: F401 from .layer.common import Embedding # noqa: F401 from .layer.common import Linear # noqa: F401 from .layer.common import Identity # noqa: F401 from .layer.common import Flatten # noqa: F401 from .layer.common import Upsample # noqa: F401 from .layer.common import UpsamplingNearest2D # noqa: F401 from .layer.common import UpsamplingBilinear2D # noqa: F401 from .layer.common import Bilinear # noqa: F401 from .layer.common import Dropout # noqa: F401 from .layer.common import Dropout2D # noqa: F401 from .layer.common import Dropout3D # noqa: F401 from .layer.common import AlphaDropout # noqa: F401 from .layer.common import Unfold # noqa: F401 from .layer.common import Fold # noqa: F401 from .layer.pooling import AvgPool1D # noqa: F401 from .layer.pooling import AvgPool2D # noqa: F401 from .layer.pooling import AvgPool3D # noqa: F401 from .layer.pooling import MaxPool1D # noqa: F401 from .layer.pooling import MaxPool2D # noqa: F401 from .layer.pooling import MaxPool3D # noqa: F401 from .layer.pooling import MaxUnPool1D # noqa: F401 from .layer.pooling import MaxUnPool2D # noqa: F401 from .layer.pooling import MaxUnPool3D # noqa: F401 from .layer.pooling import AdaptiveAvgPool1D # noqa: F401 from .layer.pooling import AdaptiveAvgPool2D # noqa: F401 from .layer.pooling import AdaptiveAvgPool3D # noqa: F401 from .layer.pooling import AdaptiveMaxPool1D # noqa: F401 from .layer.pooling import AdaptiveMaxPool2D # noqa: F401 from .layer.pooling import AdaptiveMaxPool3D # noqa: F401 from .layer.conv import Conv1D # noqa: F401 from .layer.conv import Conv2D # noqa: F401 from .layer.conv import Conv3D # noqa: F401 from .layer.conv import Conv1DTranspose # noqa: F401 from .layer.conv import Conv2DTranspose # noqa: F401 from .layer.conv import Conv3DTranspose # noqa: F401 from .layer.loss import BCEWithLogitsLoss # noqa: F401 from .layer.loss import CrossEntropyLoss # noqa: F401 from .layer.loss import HSigmoidLoss # noqa: F401 from .layer.loss import MSELoss # noqa: F401 from .layer.loss import L1Loss # noqa: F401 from .layer.loss import NLLLoss # noqa: F401 from .layer.loss import PoissonNLLLoss # noqa: F401 from .layer.loss import BCELoss # noqa: F401 from .layer.loss import KLDivLoss # noqa: F401 from .layer.loss import MarginRankingLoss # noqa: F401 from .layer.loss import MultiLabelSoftMarginLoss from .layer.loss import CTCLoss # noqa: F401 from .layer.loss import RNNTLoss # noqa: F401 from .layer.loss import SmoothL1Loss # noqa: F401 from .layer.loss import HingeEmbeddingLoss # noqa: F401 from .layer.loss import CosineEmbeddingLoss # noqa: F401 from .layer.loss import MultiMarginLoss from .layer.loss import TripletMarginWithDistanceLoss from .layer.loss import TripletMarginLoss from .layer.loss import SoftMarginLoss from .layer.norm import BatchNorm # noqa: F401 from .layer.norm import SyncBatchNorm # noqa: F401 from .layer.norm import GroupNorm # noqa: F401 from .layer.norm import LayerNorm # noqa: F401 from .layer.norm import SpectralNorm # noqa: F401 from .layer.norm import InstanceNorm1D # noqa: F401 from .layer.norm import InstanceNorm2D # noqa: F401 from .layer.norm import InstanceNorm3D # noqa: F401 from .layer.norm import BatchNorm1D # noqa: F401 from .layer.norm import BatchNorm2D # noqa: F401 from .layer.norm import BatchNorm3D # noqa: F401 from .layer.norm import LocalResponseNorm # noqa: F401 from .layer.rnn import RNNCellBase # noqa: F401 from .layer.rnn import SimpleRNNCell # noqa: F401 from .layer.rnn import LSTMCell # noqa: F401 from .layer.rnn import GRUCell # noqa: F401 from .layer.rnn import RNN # noqa: F401 from .layer.rnn import BiRNN # noqa: F401 from .layer.rnn import SimpleRNN # noqa: F401 from .layer.rnn import LSTM # noqa: F401 from .layer.rnn import GRU # noqa: F401 from .layer.transformer import MultiHeadAttention # noqa: F401 from .layer.transformer import TransformerEncoderLayer # noqa: F401 from .layer.transformer import TransformerEncoder # noqa: F401 from .layer.transformer import TransformerDecoderLayer # noqa: F401 from .layer.transformer import TransformerDecoder # noqa: F401 from .layer.transformer import Transformer # noqa: F401 from .layer.distance import PairwiseDistance # noqa: F401 from .layer.vision import PixelShuffle # noqa: F401 from .layer.vision import PixelUnshuffle # noqa: F401 from .layer.vision import ChannelShuffle # noqa: F401 from .layer.container import LayerDict # noqa: F401 from .layer.layers import Layer # noqa: F401 from .utils.spectral_norm_hook import spectral_norm # TODO: remove loss, keep it for too many used in unitests from .layer import loss # noqa: F401 from . import utils # noqa: F401 from . import functional # noqa: F401 from . import initializer # noqa: F401 from . import quant # noqa: F401 # TODO: remove 'diag_embed', 'remove_weight_norm', 'weight_norm' months later. from paddle.utils import deprecated @deprecated( since="2.0.0", update_to="paddle.nn.funcitional.diag_embed", level=1, reason="diag_embed in paddle.nn will be removed in future", ) def diag_embed(*args): ''' alias name of paddle.nn.functional.diag_embed ''' return functional.diag_embed(*args) @deprecated( since="2.0.0", update_to="paddle.nn.utils.remove_weight_norm", level=1, reason="remove_weight_norm in paddle.nn will be removed in future", ) def remove_weight_norm(*args): ''' alias name of paddle.nn.utils.remove_weight_norm ''' return utils.remove_weight_norm(*args) @deprecated( since="2.0.0", update_to="paddle.nn.utils.weight_norm", level=1, reason="weight_norm in paddle.nn will be removed in future", ) def weight_norm(*args): ''' alias name of paddle.nn.utils.weight_norm ''' return utils.weight_norm(*args) __all__ = [ # noqa 'BatchNorm', 'CELU', 'GroupNorm', 'LayerNorm', 'SpectralNorm', 'BatchNorm1D', 'BatchNorm2D', 'BatchNorm3D', 'InstanceNorm1D', 'InstanceNorm2D', 'InstanceNorm3D', 'SyncBatchNorm', 'LocalResponseNorm', 'Embedding', 'Linear', 'Upsample', 'UpsamplingNearest2D', 'UpsamplingBilinear2D', 'Pad1D', 'Pad2D', 'Pad3D', 'CosineSimilarity', 'Dropout', 'Dropout2D', 'Dropout3D', 'Bilinear', 'AlphaDropout', 'Unfold', 'Fold', 'RNNCellBase', 'SimpleRNNCell', 'LSTMCell', 'GRUCell', 'RNN', 'BiRNN', 'SimpleRNN', 'LSTM', 'GRU', 'dynamic_decode', 'MultiHeadAttention', 'Maxout', 'Softsign', 'Transformer', 'MSELoss', 'LogSigmoid', 'BeamSearchDecoder', 'ClipGradByNorm', 'ReLU', 'PairwiseDistance', 'BCEWithLogitsLoss', 'SmoothL1Loss', 'MaxPool3D', 'AdaptiveMaxPool2D', 'Hardshrink', 'Softplus', 'KLDivLoss', 'AvgPool2D', 'L1Loss', 'LeakyReLU', 'AvgPool1D', 'AdaptiveAvgPool3D', 'AdaptiveMaxPool3D', 'NLLLoss', 'PoissonNLLLoss', 'Conv1D', 'Sequential', 'Hardswish', 'Conv1DTranspose', 'AdaptiveMaxPool1D', 'TransformerEncoder', 'Softmax', 'Softmax2D', 'ParameterList', 'Conv2D', 'Softshrink', 'Hardtanh', 'TransformerDecoderLayer', 'CrossEntropyLoss', 'GELU', 'SELU', 'Silu', 'Conv2DTranspose', 'CTCLoss', 'RNNTLoss', 'ThresholdedReLU', 'AdaptiveAvgPool2D', 'MaxPool1D', 'Layer', 'TransformerDecoder', 'Conv3D', 'Tanh', 'Conv3DTranspose', 'Flatten', 'AdaptiveAvgPool1D', 'Tanhshrink', 'HSigmoidLoss', 'PReLU', 'TransformerEncoderLayer', 'AvgPool3D', 'MaxPool2D', 'MarginRankingLoss', 'LayerList', 'ClipGradByValue', 'BCELoss', 'Hardsigmoid', 'ClipGradByGlobalNorm', 'LogSoftmax', 'Sigmoid', 'Swish', 'Mish', 'PixelShuffle', 'PixelUnshuffle', 'ChannelShuffle', 'ELU', 'ReLU6', 'LayerDict', 'ZeroPad2D', 'MaxUnPool1D', 'MaxUnPool2D', 'MaxUnPool3D', 'MultiLabelSoftMarginLoss', 'HingeEmbeddingLoss', 'Identity', 'CosineEmbeddingLoss', 'RReLU', 'MultiMarginLoss', 'TripletMarginWithDistanceLoss', 'TripletMarginLoss', 'SoftMarginLoss', ]