# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest, convert_float_to_uint16 import paddle import paddle.fluid as fluid from paddle.static import Program, program_guard # situation 1: have shape( list, no tensor), no actual shape(Tensor) class TestReshapeOp(OpTest): def setUp(self): self.init_data() self.op_type = "reshape2" self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")} self.attrs = {"shape": self.new_shape} self.outputs = { "Out": self.inputs["X"].reshape(self.infered_shape), 'XShape': np.random.random(self.ori_shape).astype("float32"), } def init_data(self): self.ori_shape = (2, 60) self.new_shape = (12, 10) self.infered_shape = (12, 10) def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOp_ZeroDim1(OpTest): def init_data(self): self.ori_shape = () self.new_shape = (1,) self.infered_shape = (1,) class TestReshapeOp_ZeroDim2(OpTest): def init_data(self): self.ori_shape = () self.new_shape = (-1,) self.infered_shape = (1,) class TestReshapeOp_ZeroDim3(OpTest): def init_data(self): self.ori_shape = (1,) self.new_shape = () self.infered_shape = () class TestReshapeBF16Op(OpTest): def setUp(self): self.init_data() self.op_type = "reshape2" self.dtype = np.uint16 x = np.random.random(self.ori_shape).astype("float32") out = x.reshape(self.infered_shape) self.inputs = {"X": convert_float_to_uint16(x)} self.attrs = {"shape": self.new_shape} self.outputs = { "Out": convert_float_to_uint16(out), 'XShape': convert_float_to_uint16( np.random.random(self.ori_shape).astype("float32") ), } def init_data(self): self.ori_shape = (2, 60) self.new_shape = (12, 10) self.infered_shape = (12, 10) def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInfer1(TestReshapeOp): def init_data(self): self.ori_shape = (5, 25) self.new_shape = (5, -1, 5) self.infered_shape = (5, -1, 5) class TestReshapeOpDimInfer2(TestReshapeOp): def init_data(self): self.ori_shape = (10, 2, 6) self.new_shape = (10, 0, 3, -1) self.infered_shape = (10, 2, 3, -1) # situation 2: have shape(list, no tensor), have actual shape(Tensor) class TestReshapeOpWithInputShape(OpTest): def setUp(self): self.init_data() self.op_type = "reshape2" self.inputs = { "X": np.random.random(self.ori_shape).astype("float32"), "Shape": np.array(self.actual_shape, dtype="int32"), } self.attrs = {"shape": self.new_shape} self.outputs = { "Out": self.inputs["X"].reshape(self.actual_shape), 'XShape': np.random.random(self.ori_shape).astype("float32"), } def init_data(self): self.ori_shape = (6, 20) self.new_shape = (0, -1, 20) self.actual_shape = (2, 3, 20) def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") # Situation 3: have shape(list, have tensor), no actual shape(Tensor) class TestReshapeOp_attr_ShapeTensor(OpTest): def setUp(self): self.init_data() self.op_type = "reshape2" shape_tensor = [] for index, ele in enumerate(self.new_shape): shape_tensor.append( ("x" + str(index), np.ones((1)).astype('int32') * ele) ) self.inputs = { "X": np.random.random(self.ori_shape).astype("float32"), 'ShapeTensor': shape_tensor, } self.attrs = {'shape': self.shape} self.outputs = { "Out": self.inputs["X"].reshape(self.infered_shape), 'XShape': np.random.random(self.ori_shape).astype("float32"), } def init_data(self): self.ori_shape = (4, 25) self.new_shape = (10, 10) self.infered_shape = (10, 10) self.shape = (-1, -1) def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor): def init_data(self): self.ori_shape = (5, 20) self.new_shape = (5, -1, 20) self.infered_shape = (5, -1, 20) self.shape = (5, -1, -1) class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor): def init_data(self): self.ori_shape = (10, 2, 6) self.new_shape = (10, 0, 3, -1) self.infered_shape = (10, 2, 3, -1) self.shape = (10, 0, 3, -1) # Situation 4: have shape(Tensor), no actual shape(Tensor) class TestReshapeOp_attr_OnlyShape(OpTest): def setUp(self): self.init_data() self.op_type = "reshape2" self.inputs = { "X": np.random.random(self.ori_shape).astype("float32"), "Shape": np.array(self.new_shape, dtype="int32"), } self.attrs = {} self.outputs = { "Out": self.inputs["X"].reshape(self.infered_shape), 'XShape': np.random.random(self.ori_shape).astype("float32"), } def init_data(self): self.ori_shape = (4, 25) self.new_shape = (10, 10) self.infered_shape = (10, 10) def test_check_output(self): self.check_output(no_check_set=['XShape']) def test_check_grad(self): self.check_grad(["X"], "Out") class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape): def init_data(self): self.ori_shape = (5, 20) self.new_shape = (5, -1, 10) self.infered_shape = (5, -1, 10) self.shape = (5, -1, -1) class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape): def init_data(self): self.ori_shape = (10, 2, 6) self.new_shape = (10, 0, 3, -1) self.infered_shape = (10, 2, 3, -1) self.shape = (10, 0, 3, -1) # test int8 data type on CPU class TestReshapeInt8Op(OpTest): def setUp(self): self.init_dtype() self.init_data() self.use_mkldnn = True self._cpu_only = True self.op_type = "reshape2" input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)} self.attrs = { 'shape': self.new_shape, 'use_mkldnn': self.use_mkldnn, } self.outputs = { "Out": self.inputs["X"].reshape(self.infered_shape), 'XShape': np.random.random(self.ori_shape).astype(np.float32), } def init_dtype(self): self.dtype = np.int8 def init_data(self): self.ori_shape = (10, 2, 6) self.new_shape = (10, 0, 3, -1) self.infered_shape = (10, 2, 3, -1) def test_check_output(self): self.check_output_with_place( fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape'] ) def test_check_grad(self): pass # test unt8 data type on CPU class TestReshapeUint8Op(TestReshapeInt8Op): def init_dtype(self): self.dtype = np.uint8 class TestReshapeOpBool(TestReshapeOp): def setUp(self): self.init_data() self.op_type = "reshape2" self.inputs = { "X": np.random.choice([True, False], size=self.ori_shape) } self.attrs = {"shape": self.new_shape} self.outputs = { "Out": self.inputs["X"].reshape(self.infered_shape), 'XShape': np.random.random(self.ori_shape).astype("float32"), } def test_check_grad(self): pass # Test python API class TestReshapeAPI(unittest.TestCase): def _set_paddle_api(self): self.fill_constant = paddle.fluid.layers.fill_constant self.data = paddle.static.data self.to_tensor = paddle.to_tensor self._executed_api() def _executed_api(self): self.reshape = paddle.reshape def _test_api(self): paddle.enable_static() input = np.random.random([2, 25]).astype("float32") shape = [2, 5, 5] main_prog = Program() with program_guard(main_prog, Program()): positive_five = self.fill_constant([1], "int32", 5) x = self.data(name="x", shape=[2, 25], dtype="float32") actual_shape = self.data(name="shape", shape=[3], dtype="int32") # situation 1: have shape( list, no tensor) out_1 = self.reshape(x, shape) # situation 2: have shape(list, no tensor) out_2 = paddle.reshape(x, actual_shape) # Situation 3: have shape(list, have tensor) out_3 = self.reshape(x, shape=[positive_five, 10]) # Situation 4: have shape(Tensor) out_4 = self.reshape(x, shape=actual_shape) exe = paddle.static.Executor(place=paddle.CPUPlace()) res_1, res_2, res_3, res_4 = exe.run( main_prog, feed={"x": input, "shape": np.array([2, 5, 5]).astype("int32")}, fetch_list=[out_1, out_2, out_3, out_4], ) assert np.array_equal(res_1, input.reshape(shape)) assert np.array_equal(res_2, input.reshape(shape)) assert np.array_equal(res_3, input.reshape([5, 10])) assert np.array_equal(res_4, input.reshape(shape)) def test_paddle_api(self): self._set_paddle_api() self._test_api() def test_imperative(self): self._set_paddle_api() input = np.random.random([2, 25]).astype("float32") shape = [2, 5, 5] with fluid.dygraph.guard(): x = self.to_tensor(input) positive_five = self.fill_constant([1], "int32", 5) out_1 = self.reshape(x, shape) out_2 = self.reshape(x, shape=[positive_five, 10]) shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32")) out_3 = self.reshape(x, shape=shape_tensor) assert np.array_equal(out_1.numpy(), input.reshape(shape)) assert np.array_equal(out_2.numpy(), input.reshape([5, 10])) assert np.array_equal(out_3.numpy(), input.reshape(shape)) class TestStaticReshape_(TestReshapeAPI): def _executed_api(self): self.reshape = paddle.reshape_ def test_imperative(self): self._set_paddle_api() input = np.random.random([2, 25]).astype("float32") shape = [2, 5, 5] with fluid.dygraph.guard(): x = self.to_tensor(input) positive_five = self.fill_constant([1], "int32", 5) out_1 = self.reshape(x, shape) out_2 = self.reshape(x, shape=[positive_five, 10]) shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32")) out_3 = self.reshape(x, shape=shape_tensor) assert np.array_equal(out_1.numpy(), input.reshape(shape)) assert np.array_equal(out_2.numpy(), input.reshape(shape)) assert np.array_equal(out_3.numpy(), input.reshape(shape)) # Test Input Error class TestReshapeOpError(unittest.TestCase): def _set_paddle_api(self): self.data = paddle.static.data self.reshape = paddle.reshape def _test_errors(self): with program_guard(Program(), Program()): # The x type of reshape_op must be Variable. def test_x_type(): x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], paddle.CPUPlace() ) self.reshape(x1, shape=[1]) self.assertRaises(TypeError, test_x_type) # The x dtype of reshape_op must be float16, float32, float64, int32 or int64. def test_x_dtype(): x2 = self.data(name="x2", shape=[2, 25], dtype="int8") self.reshape(x2, shape=[2, 5, 5]) self.assertRaises(TypeError, test_x_dtype) def test_x_dtype_float16(): x_float16 = self.data( name="x_float16", shape=[2, 25], dtype="float16" ) self.reshape(x_float16, shape=[2, 5, 5]) test_x_dtype_float16() x3 = self.data(name="x3", shape=[2, 25], dtype="float32") # The argument shape's type of reshape_op must be list, tuple or Variable. def test_shape_type(): self.reshape(x3, shape=1) self.assertRaises(TypeError, test_shape_type) # The argument shape have more than one -1. def test_shape_1(): self.reshape(x3, shape=[-1, -1, 5]) self.assertRaises(AssertionError, test_shape_1) # The argument shape have element 0 whose index exceed the input dimension. def test_shape_2(): self.reshape(x3, [2, 5, 5, 0]) self.assertRaises(AssertionError, test_shape_2) # The argument shape have more than one negative value. def test_shape_3(): self.reshape(x3, [-1, -2, 5]) self.assertRaises(AssertionError, test_shape_3) def test_paddle_api_error(self): self._set_paddle_api() self._test_errors() class TestDygraphReshapeAPI(unittest.TestCase): def setUp(self): self.executed_api() def executed_api(self): self.reshape = paddle.reshape def test_out(self): paddle.disable_static() input_1 = np.random.random([5, 1, 10]).astype("int32") input = paddle.to_tensor(input_1) output = self.reshape(x=input, shape=[5, 10]) out_np = output.numpy() expected_out = np.reshape(input_1, newshape=[5, 10]) np.testing.assert_allclose(expected_out, out_np, rtol=1e-05) def test_out_uint8(self): paddle.disable_static() input_1 = np.random.random([5, 1, 10]).astype("uint8") input = paddle.to_tensor(input_1) output = self.reshape(x=input, shape=[5, 10]) out_np = output.numpy() expected_out = np.reshape(input_1, newshape=[5, 10]) np.testing.assert_allclose(expected_out, out_np, rtol=1e-05) def test_out_float32(self): paddle.disable_static() input_1 = np.random.random([5, 1, 10]).astype("float32") input = paddle.to_tensor(input_1) output = self.reshape(x=input, shape=[5, 10]) out_np = output.numpy() expected_out = np.reshape(input_1, newshape=[5, 10]) np.testing.assert_allclose(expected_out, out_np, rtol=1e-05) class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI): def executed_api(self): self.reshape = paddle.reshape_ class TestReshapeZeroTensor(unittest.TestCase): def test_reshape_zero_tensor_success(self): zero_tensor = paddle.zeros([0, 2, 3]) # since we use "0" as the dimension copy semantically in reshape, # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape zero_tensor = zero_tensor.reshape([0, 6]) self.assertTrue(list(zero_tensor.shape) == [0, 6]) def test_reshape_zero_tensor_error(self): zero_tensor = paddle.zeros([0, 2, 3]) with self.assertRaises(ValueError): zero_tensor.reshape([2, 3]) class TestReshapeAPI_ZeroDim(unittest.TestCase): def test_dygraph(self): paddle.disable_static() fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) x = paddle.rand([]) x.stop_gradient = False out = paddle.reshape(x, [1]) out.backward() self.assertEqual(x.grad.shape, []) self.assertEqual(out.shape, [1]) self.assertEqual(out.grad.shape, [1]) out = paddle.reshape(x, [-1, 1]) out.backward() self.assertEqual(x.grad.shape, []) self.assertEqual(out.shape, [1, 1]) self.assertEqual(out.grad.shape, [1, 1]) x = paddle.rand([1]) x.stop_gradient = False out = paddle.reshape(x, []) out.backward() self.assertEqual(x.grad.shape, [1]) self.assertEqual(out.shape, []) self.assertEqual(out.grad.shape, []) paddle.enable_static() def test_static(self): main_prog = fluid.Program() with fluid.program_guard(main_prog, fluid.Program()): x = paddle.rand([]) x.stop_gradient = False out = paddle.reshape(x, [-1]) fluid.backward.append_backward(out) prog = paddle.static.default_main_program() block = prog.global_block() x_grad = block.var(fluid.framework.grad_var_name(x.name)) out_grad = block.var(fluid.framework.grad_var_name(out.name)) # Test compile shape self.assertEqual(x.shape, ()) self.assertEqual(out.shape, (1,)) self.assertEqual(x_grad.shape, ()) self.assertEqual(out_grad.shape, (1,)) exe = fluid.Executor() result = exe.run(main_prog, fetch_list=[x, out, x_grad, out_grad]) # Test runtime shape self.assertEqual(result[0].shape, ()) self.assertEqual(result[1].shape, (1,)) self.assertEqual(result[2].shape, ()) self.assertEqual(result[3].shape, (1,)) if __name__ == "__main__": paddle.enable_static() unittest.main()