// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/set_value_op.h" #include #include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace framework { class InferShapeContext; class OpDesc; template class EmptyGradOpMaker; } // namespace framework namespace imperative { class OpBase; } // namespace imperative namespace platform { class CPUDeviceContext; struct CPUPlace; } // namespace platform } // namespace paddle namespace paddle { namespace operators { class SetValue : public framework::OperatorWithKernel { public: SetValue(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "SetValue"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SetValue"); auto in_dims = ctx->GetInputDim("Input"); PADDLE_ENFORCE_LT( in_dims.size(), 7, platform::errors::InvalidArgument( "The rank of input should be less than 7, but received %d.", in_dims.size())); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace()); } framework::OpKernelType GetKernelTypeForVar( const std::string &var_name, const Tensor &tensor, const framework::OpKernelType &expected_kernel_type) const override { if (var_name == "StartsTensorList" || var_name == "EndsTensorList" || var_name == "StepsTensorList") { return expected_kernel_type; } return framework::OpKernelType(expected_kernel_type.data_type_, tensor.place(), tensor.layout()); } }; class SetValueMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { // Input AddInput("Input", "(Tensor) Input tensor of set_value operator."); AddInput("ValueTensor", "(Tensor) Value tensor of set_value operator.") .AsDispensable(); AddInput("StartsTensorList", "(vector>, optional) If provided, set_value will " "use this. The shape of the tensor in vector must be [1]." "It has higher priority compare with attr(starts).") .AsDuplicable() .AsDispensable(); AddInput("EndsTensorList", "(vector>, optional) If provided, set_value will " "use this. The shape of the tensor in vector must BE [1]." "It has higher priority compare with attr(ends).") .AsDuplicable() .AsDispensable(); AddInput("StepsTensorList", "(vector>, optional) If provided, set_value will " "use this. The shape of the tensor in vector must BE [1]." "It has higher priority compare with attr(steps).") .AsDuplicable() .AsDispensable(); // Output AddOutput("Out", "(Tensor) Output tensor of set_value operator. The output is the " "same Tensor as input"); // Attr AddAttr("dtype", "data type of input.") .InEnum( {framework::proto::VarType::BOOL, framework::proto::VarType::INT32, framework::proto::VarType::INT64, framework::proto::VarType::FP32, framework::proto::VarType::FP64}) .SetDefault(framework::proto::VarType::FP32); AddAttr>( "axes", "(list) Axes that `starts` and `ends` apply to."); AddAttr>( "starts", "(list) Starting indices of corresponding axis in `axes`.") .SetDefault({}); AddAttr>( "ends", "(list) Ending indices of corresponding axis in `axes`.") .SetDefault({}); AddAttr>( "steps", "(list) Stride step from the start to the end.") .SetDefault({}); AddAttr>("decrease_axes", "(list) The axes to decrease.") .SetDefault({}); AddAttr>("none_axes", "(list) The axes to none.") .SetDefault({}); AddAttr>("bool_values", "Store the bool values.") .SetDefault({}); AddAttr>("fp32_values", "Store the float32 values.") .SetDefault({}); AddAttr>("int32_values", "Store the int32 values.") .SetDefault({}); AddAttr>("int64_values", "Store the int64 values.") .SetDefault({}); AddAttr>("fp64_values", "Store the float64 values.") .SetDefault({}); AddAttr>("shape", "(vector) Shape of values.") .SetDefault({}); AddComment(R"DOC(SetValue operator. Assignment to a Tensor in static mode. )DOC"); } }; template class SetValueGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { if (this->HasInput("ValueTensor")) { op->SetType("slice"); op->SetInput("Input", this->OutputGrad("Out")); if (this->HasInput("StartsTensorList")) { op->SetInput("StartsTensorList", this->Input("StartsTensorList")); } if (this->HasInput("EndsTensorList")) { op->SetInput("EndsTensorList", this->Input("EndsTensorList")); } // convert std::vector to std::vector std::vector axes_int64 = static_cast>( BOOST_GET_CONST(std::vector, this->GetAttr("axes"))); std::vector starts_int64 = static_cast>( BOOST_GET_CONST(std::vector, this->GetAttr("starts"))); std::vector ends_int64 = static_cast>( BOOST_GET_CONST(std::vector, this->GetAttr("ends"))); std::vector decrease_axes_int64 = static_cast>(BOOST_GET_CONST( std::vector, this->GetAttr("decrease_axes"))); std::vector axes(axes_int64.begin(), axes_int64.end()); std::vector starts(starts_int64.begin(), starts_int64.end()); std::vector ends(ends_int64.begin(), ends_int64.end()); std::vector decrease_axes(decrease_axes_int64.begin(), decrease_axes_int64.end()); op->SetAttr("axes", axes); op->SetAttr("starts", starts); op->SetAttr("ends", ends); op->SetAttr("decrease_axis", decrease_axes); op->SetAttr("infer_flags", std::vector({})); op->SetOutput("Out", this->InputGrad("ValueTensor")); } else { op->SetType("assign"); op->SetInput("X", this->OutputGrad("Out")); op->SetOutput("Out", this->InputGrad("Input")); } } }; DECLARE_INPLACE_OP_INFERER(SetValueOpInplaceInferer, {"Input", "Out"}); } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OPERATOR(set_value, ops::SetValue, ops::SetValueMaker, ops::SetValueGradMaker, ops::SetValueGradMaker, ops::SetValueOpInplaceInferer); REGISTER_OP_CPU_KERNEL( set_value, ops::SetValueKernel, ops::SetValueKernel, ops::SetValueKernel, ops::SetValueKernel, ops::SetValueKernel); REGISTER_OP_VERSION(set_value) .AddCheckpoint( R"ROC( Upgrade set_value, add 3 inputs [StartsTensorList, EndsTensorList, StepsTensorList] and 1 attribute [steps]. )ROC", paddle::framework::compatible::OpVersionDesc() .NewInput("StartsTensorList", "If provided, set_value will use this.The shape of the " "tensor in vector must be [1]. It has higher priority " "compare with attr(starts).") .NewInput("EndsTensorList", "If provided, set_value will use this.The shape of the " "tensor in vector must be [1]. It has higher priority " "compare with attr(ends).") .NewInput("StepsTensorList", "If provided, set_value will use this.The shape of the " "tensor in vector must be [1]. It has higher priority " "compare with attr(steps).") .ModifyAttr("starts", "Starting indices of corresponding axis in `axes`.", std::vector{}) .ModifyAttr("ends", "Ending indices of corresponding axis in `axes`.", std::vector{}) .NewAttr("steps", "Stride step from the start to the end.", std::vector{})) .AddCheckpoint( R"ROC( Upgrade set_value, add 1 attribute [decrease_axes]. )ROC", paddle::framework::compatible::OpVersionDesc().NewAttr( "decrease_axes", "The axes to decrease.", std::vector{})) .AddCheckpoint( R"ROC( Upgrade set_value, add 1 attribute [none_axes]. )ROC", paddle::framework::compatible::OpVersionDesc().NewAttr( "none_axes", "The axes with none index.", std::vector{}));