# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16 import paddle from paddle import fluid, tensor from paddle.fluid import core class TestTraceOp(OpTest): def setUp(self): self.op_type = "trace" self.python_api = paddle.trace self.init_config() self.outputs = {'Out': self.target} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['Input'], 'Out') def init_config(self): self.case = np.random.randn(20, 6).astype('float64') self.inputs = {'Input': self.case} self.attrs = {'offset': 0, 'axis1': 0, 'axis2': 1} self.target = np.trace(self.inputs['Input']) class TestTraceOpCase1(TestTraceOp): def init_config(self): self.case = np.random.randn(2, 20, 2, 3).astype('float32') self.inputs = {'Input': self.case} self.attrs = {'offset': 1, 'axis1': 0, 'axis2': 2} self.target = np.trace( self.inputs['Input'], offset=self.attrs['offset'], axis1=self.attrs['axis1'], axis2=self.attrs['axis2'], ) class TestTraceOpCase2(TestTraceOp): def init_config(self): self.case = np.random.randn(2, 20, 2, 3).astype('float32') self.inputs = {'Input': self.case} self.attrs = {'offset': -5, 'axis1': 1, 'axis2': -1} self.target = np.trace( self.inputs['Input'], offset=self.attrs['offset'], axis1=self.attrs['axis1'], axis2=self.attrs['axis2'], ) class TestTraceFP16Op1(TestTraceOp): def init_config(self): self.dtype = np.float16 self.case = np.random.randn(20, 6).astype(self.dtype) self.inputs = {'Input': self.case} self.attrs = {'offset': 0, 'axis1': 0, 'axis2': 1} self.target = np.trace(self.inputs['Input']) class TestTraceFP16Op2(TestTraceOp): def init_config(self): self.dtype = np.float16 self.case = np.random.randn(2, 20, 2, 3).astype(self.dtype) self.inputs = {'Input': self.case} self.attrs = {'offset': -5, 'axis1': 1, 'axis2': -1} self.target = np.trace( self.inputs['Input'], offset=self.attrs['offset'], axis1=self.attrs['axis1'], axis2=self.attrs['axis2'], ) @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestTraceBF16Op1(OpTest): def setUp(self): self.op_type = "trace" self.python_api = paddle.trace self.init_config() self.outputs = {'Out': self.target} self.inputs['Input'] = convert_float_to_uint16(self.inputs['Input']) self.outputs['Out'] = convert_float_to_uint16(self.outputs['Out']) self.place = core.CUDAPlace(0) def test_check_output(self): self.check_output_with_place(self.place) def test_check_grad(self): self.check_grad_with_place( self.place, ['Input'], 'Out', numeric_grad_delta=0.02 ) def init_config(self): self.dtype = np.uint16 self.np_dtype = np.float32 self.case = np.random.randn(20, 6).astype(self.np_dtype) self.inputs = {'Input': self.case} self.attrs = {'offset': 0, 'axis1': 0, 'axis2': 1} self.target = np.trace(self.inputs['Input']) @unittest.skipIf( not core.is_compiled_with_cuda() or not core.is_bfloat16_supported(core.CUDAPlace(0)), "core is not compiled with CUDA or not support bfloat16", ) class TestTraceBF16Op2(TestTraceBF16Op1): def init_config(self): self.dtype = np.uint16 self.np_dtype = np.float32 self.case = np.random.randn(2, 20, 2, 3).astype(self.np_dtype) self.inputs = {'Input': self.case} self.attrs = {'offset': -5, 'axis1': 1, 'axis2': -1} self.target = np.trace( self.inputs['Input'], offset=self.attrs['offset'], axis1=self.attrs['axis1'], axis2=self.attrs['axis2'], ) class TestTraceAPICase(unittest.TestCase): def test_case1(self): case = np.random.randn(2, 20, 2, 3).astype('float32') data1 = paddle.static.data( name='data1', shape=[2, 20, 2, 3], dtype='float32' ) out1 = tensor.trace(data1) out2 = tensor.trace(data1, offset=-5, axis1=1, axis2=-1) place = core.CPUPlace() exe = fluid.Executor(place) results = exe.run( fluid.default_main_program(), feed={"data1": case}, fetch_list=[out1, out2], return_numpy=True, ) target1 = np.trace(case) target2 = np.trace(case, offset=-5, axis1=1, axis2=-1) np.testing.assert_allclose(results[0], target1, rtol=1e-05) np.testing.assert_allclose(results[1], target2, rtol=1e-05) if __name__ == "__main__": paddle.enable_static() unittest.main()