// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/graph_send_uv_grad_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/hostdevice.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/funcs/elementwise_functor.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/gpu/graph_send_recv_funcs.h" #include "paddle/phi/kernels/gpu/graph_send_ue_recv_funcs.h" #include "paddle/phi/kernels/impl/graph_message_passing_impl.h" #include "paddle/phi/kernels/reduce_sum_kernel.h" namespace phi { template __global__ void GraphSendUVGradCUDAKernel(const T* out_grad, const IndexT* src_indices, const IndexT* dst_indices, int64_t index_size, int64_t slice_size, T* x_grad) { IndexT ty = blockIdx.y * blockDim.y + threadIdx.y; const IndexT stride_y = blockDim.y * gridDim.y; while (ty < index_size) { IndexT src = src_indices[ty]; IndexT dst = dst_indices[ty]; int64_t tx = blockIdx.x * blockDim.x + threadIdx.x; int64_t stride_x = blockDim.x * gridDim.x; const T* out_grad_off = out_grad + ty * slice_size; T* x_grad_off = x_grad + dst * slice_size; while (tx < slice_size) { paddle::platform::CudaAtomicAdd(x_grad_off + tx, out_grad_off[tx]); tx += stride_x; } ty += stride_y; } } template void CalculateGrad(const Context& ctx, const T* out_grad, const IndexT* s_index, const IndexT* d_index, const phi::DDim& out_grad_dims, const phi::DDim& x_grad_dims, const std::string& message_op, int64_t index_size, int64_t slice_size, T* x_grad, const DenseTensor& out_grad_tensor, const DenseTensor& y) { std::vector reduce_idx; bool reduce = ReduceGrad(out_grad_dims, x_grad_dims, reduce_idx); if (message_op == "ADD") { if (!reduce) { const int ntx = FindNumThreads(slice_size, ctx.GetMaxThreadsPerBlock()); const int nty = ctx.GetMaxThreadsPerBlock() / ntx; const int nbx = (slice_size + ntx - 1) / ntx; const int nby = FindNumBlocks('y', (index_size + nty - 1) / nty); const dim3 grid_tmp(nbx, nby); const dim3 block_tmp(ntx, nty); GraphSendUVGradCUDAKernel <<>>( out_grad, d_index, s_index, index_size, slice_size, x_grad); } else { const auto& bcast_info = phi::CalcBCastInfo(out_grad_dims, x_grad_dims); auto out_grad_dims_1 = phi::vectorize(out_grad_dims); std::vector out_grad_dims_2(out_grad_dims_1.begin() + 1, out_grad_dims_1.end()); out_grad_dims_2.insert(out_grad_dims_2.begin(), x_grad_dims[0]); DenseTensor x_grad_v2 = phi::Empty(ctx, out_grad_dims_2); phi::funcs::SetConstant()(ctx, &x_grad_v2, T(0)); T* x_grad_v2_data = x_grad_v2.data(); const int ntx = FindNumThreads(bcast_info.out_len, ctx.GetMaxThreadsPerBlock()); const int nty = ctx.GetMaxThreadsPerBlock() / ntx; const int nbx = (bcast_info.out_len + ntx - 1) / ntx; const int nby = FindNumBlocks('y', (index_size + nty - 1) / nty); const dim3 grid_tmp(nbx, nby); const dim3 block_tmp(ntx, nty); GraphSendUVGradCUDAKernel <<>>(out_grad, d_index, s_index, index_size, bcast_info.out_len, x_grad_v2_data); // Run reduce sum DenseTensor x_grad_out = phi::Sum( ctx, x_grad_v2, phi::IntArray(reduce_idx), paddle::experimental::CppTypeToDataType::Type(), true); #ifdef PADDLE_WITH_HIP hipMemcpy(x_grad, x_grad_out.data(), x_grad_out.numel() * sizeof(T), hipMemcpyDeviceToDevice); #else cudaMemcpy(x_grad, x_grad_out.data(), x_grad_out.numel() * sizeof(T), cudaMemcpyDeviceToDevice); #endif } } else if (message_op == "MUL") { const auto& bcast_info = phi::CalcBCastInfo(y.dims(), out_grad_dims); thrust::device_vector l_bcastoff, r_bcastoff; if (bcast_info.use_bcast) { CopyBCastOff(bcast_info, l_bcastoff, r_bcastoff); } int64_t out_len = bcast_info.out_len; const int ntx = FindNumThreads(out_len, ctx.GetMaxThreadsPerBlock()); const int nty = ctx.GetMaxThreadsPerBlock() / ntx; const int nbx = (out_len + ntx - 1) / ntx; const int nby = FindNumBlocks('y', (index_size + nty - 1) / nty); const dim3 grid_(nbx, nby); const dim3 block_(ntx, nty); funcs::MultiplyFunctor mul_functor; GraphSendUERecvSumCUDAFunctor sum_functor; const T* y_data = y.data(); if (!reduce) { GraphSendUERecvCUDAKernel, funcs::MultiplyFunctor> <<>>( y_data, out_grad, d_index, s_index, thrust::raw_pointer_cast(l_bcastoff.data()), thrust::raw_pointer_cast(r_bcastoff.data()), x_grad, index_size, bcast_info.l_len, bcast_info.r_len, out_len, bcast_info.use_bcast, mul_functor, sum_functor); } else { auto out_grad_dims_1 = phi::vectorize(out_grad_dims); std::vector out_grad_dims_2(out_grad_dims_1.begin() + 1, out_grad_dims_1.end()); out_grad_dims_2.insert(out_grad_dims_2.begin(), x_grad_dims[0]); DenseTensor x_grad_v2 = phi::Empty(ctx, out_grad_dims_2); phi::funcs::SetConstant()(ctx, &x_grad_v2, T(0)); T* x_grad_v2_data = x_grad_v2.data(); GraphSendUERecvCUDAKernel, funcs::MultiplyFunctor> <<>>( y_data, out_grad, d_index, s_index, thrust::raw_pointer_cast(l_bcastoff.data()), thrust::raw_pointer_cast(r_bcastoff.data()), x_grad_v2_data, index_size, bcast_info.l_len, bcast_info.r_len, out_len, bcast_info.use_bcast, mul_functor, sum_functor); // Run reduce_sum DenseTensor x_grad_out = phi::Sum( ctx, x_grad_v2, phi::IntArray(reduce_idx), paddle::experimental::CppTypeToDataType::Type(), true); #ifdef PADDLE_WITH_HIP hipMemcpy(x_grad, x_grad_out.data(), x_grad_out.numel() * sizeof(T), hipMemcpyDeviceToDevice); #else cudaMemcpy(x_grad, x_grad_out.data(), x_grad_out.numel() * sizeof(T), cudaMemcpyDeviceToDevice); #endif } } } template void GraphSendUVGradOpCUDAKernelLaunchHelper(const Context& ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out_grad, const DenseTensor& src_index, const DenseTensor& dst_index, const std::string& message_op, DenseTensor* x_grad, DenseTensor* y_grad) { const int64_t& index_size = dst_index.dims()[0]; PADDLE_ENFORCE_GT( index_size, 0, errors::InvalidArgument("The first dimension of src_index or dst_index " "shoule be greater than 0, but received %d.", index_size)); ctx.template Alloc(x_grad); T* x_grad_data = x_grad->data(); ctx.template Alloc(y_grad); T* y_grad_data = y_grad->data(); const auto& x_grad_dims = x_grad->dims(); const auto& y_grad_dims = y_grad->dims(); int64_t memset_size_x = 1, memset_size_y = 1; int64_t slice_size_x = 1, slice_size_y = 1; for (int i = 0; i < x_grad_dims.size(); i++) { memset_size_x *= x_grad_dims[i]; if (i > 0) slice_size_x *= x_grad_dims[i]; } for (int i = 0; i < y_grad_dims.size(); i++) { memset_size_y *= y_grad_dims[i]; if (i > 0) slice_size_y *= y_grad_dims[i]; } const size_t& memset_bytes_x = memset_size_x * sizeof(T); const size_t& memset_bytes_y = memset_size_y * sizeof(T); #ifdef PADDLE_WITH_HIP hipMemset(x_grad_data, 0, memset_bytes_x); hipMemset(y_grad_data, 0, memset_bytes_y); #else cudaMemset(x_grad_data, 0, memset_bytes_x); cudaMemset(y_grad_data, 0, memset_bytes_y); #endif const T* out_grad_data = out_grad.data(); const IndexT* s_index = src_index.data(); const IndexT* d_index = dst_index.data(); // Calculate X grad. const auto& out_grad_dims = out_grad.dims(); CalculateGrad(ctx, out_grad_data, s_index, d_index, out_grad_dims, x_grad_dims, message_op, index_size, slice_size_x, x_grad_data, out_grad, y); // Calculate Y grad. CalculateGrad(ctx, out_grad_data, d_index, s_index, out_grad_dims, y_grad_dims, message_op, index_size, slice_size_y, y_grad_data, out_grad, x); } template void GraphSendUVGradKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& src_index, const DenseTensor& dst_index, const DenseTensor& out_grad, const std::string& message_op, DenseTensor* x_grad, DenseTensor* y_grad) { auto index_type = src_index.dtype(); if (index_type == phi::DataType::INT32) { GraphSendUVGradOpCUDAKernelLaunchHelper( ctx, x, y, out_grad, src_index, dst_index, message_op, x_grad, y_grad); } else if (index_type == phi::DataType::INT64) { GraphSendUVGradOpCUDAKernelLaunchHelper( ctx, x, y, out_grad, src_index, dst_index, message_op, x_grad, y_grad); } } } // namespace phi PD_REGISTER_KERNEL(graph_send_uv_grad, GPU, ALL_LAYOUT, phi::GraphSendUVGradKernel, float, double, int, int64_t, phi::dtype::float16) {}