# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import framework from paddle.distributed.parallel import ( _split_tensors, build_groups, in_dygraph_mode, sync_params_buffers, ) # (TODO: GhostScreaming) It will be removed later. from paddle.fluid import core from .log_util import logger __all__ = [] def _apply_collective_grads(parameters, comm_group, bucket_size, scale=None): grad_var_set = set() grad_vars = [] sparse_grad_vars = [] for param in parameters: if param.trainable and (param._grad_ivar() is not None): g_var = param._grad_ivar() assert ( not g_var._is_sparse() ), "Now, it doesn't support sparse parameters" grad_vars.append(g_var) assert g_var not in grad_var_set grad_var_set.add(g_var) coalesced_grads_and_vars = build_groups(grad_vars, bucket_size) nranks = ( paddle.distributed.get_world_size() if comm_group is None else comm_group.nranks ) scale = nranks if scale is None else 1.0 / scale scale = None if scale == 1.0 else scale for coalesced_grad, _, _ in coalesced_grads_and_vars: # need to div nranks if scale is not None: div_factor = paddle.to_tensor(scale, dtype=coalesced_grad.dtype) paddle.fluid.framework._dygraph_tracer().trace_op( type="elementwise_div", inputs={'X': coalesced_grad, 'Y': div_factor}, outputs={'Out': coalesced_grad}, attrs={'axis': -1}, ) paddle.distributed.all_reduce(coalesced_grad, group=comm_group) _split_tensors(coalesced_grads_and_vars) def _apply_collective_grads_eager( parameters, comm_group, bucket_size, scale=None ): grad_var_set = set() grad_vars = [] for param in parameters: g_var = None if param.trainable and (param._grad_ivar() is not None): g_var = param._grad_ivar() if param.trainable and hasattr(param, "main_grad"): assert param._grad_ivar() is None, "param.grad is not None" g_var = param.main_grad if g_var is not None: assert ( not g_var.is_sparse() ), "Now, it doesn't support sparse parameters" grad_vars.append(g_var) assert g_var not in grad_var_set grad_var_set.add(g_var) coalesced_grads_and_vars = build_groups(grad_vars, bucket_size) nranks = ( paddle.distributed.get_world_size() if comm_group is None else comm_group.nranks ) scale = 1.0 / nranks if scale is None else scale scale = None if scale == 1.0 else scale for coalesced_grad, _, _ in coalesced_grads_and_vars: # need to div nranks if scale is not None: coalesced_grad.scale_(scale) paddle.distributed.all_reduce(coalesced_grad, group=comm_group) _split_tensors(coalesced_grads_and_vars) def _broadcast_data_help(data, shape, dtype, hcg): model_parallel_group = hcg.get_model_parallel_group() src_rank = hcg.get_model_parallel_group_src_rank() mp_rank = hcg.get_model_parallel_rank() shape_gpu = paddle.to_tensor(shape, dtype="int32") paddle.distributed.broadcast( shape_gpu, src=src_rank, group=model_parallel_group, sync_op=True ) if mp_rank != 0: input_data = paddle.zeros(shape_gpu, dtype=dtype) else: input_data = data paddle.distributed.broadcast( input_data, src=src_rank, group=model_parallel_group, sync_op=True ) if mp_rank != 0: if in_dygraph_mode(): data._clear_data() input_data._share_buffer_to(data) else: data.value().get_tensor()._clear() data.value().get_tensor()._share_data_with( input_data.value().get_tensor() ) def _broadcast_object_list_help(object_list, hcg): model_parallel_group = hcg.get_model_parallel_group() src_rank = hcg.get_model_parallel_group_src_rank() mp_rank = hcg.get_model_parallel_rank() paddle.distributed.broadcast_object_list( object_list, src=src_rank, group=model_parallel_group ) def broadcast_input_data(hcg, *inputs, **kwargs): cur_device = paddle.get_device() dev = cur_device.split(":")[0] assert ( dev in [ "xpu", "gpu", ] or dev in paddle.device.get_all_custom_device_type() ), f"Only support xpu, gpu and custom_device now, but this is {dev}" dev_idx = int(cur_device.split(':')[1]) if dev == "gpu": place = paddle.CUDAPlace(dev_idx) elif dev in paddle.device.get_all_custom_device_type(): place = paddle.CustomPlace(dev, dev_idx) else: place = eval(f"paddle.{dev.upper()}Place")(dev_idx) for v in inputs: if isinstance(v, core.eager.Tensor): with framework.no_grad(): if in_dygraph_mode() and not eval(f"v.place.is_{dev}_place")(): v_gpu = v._copy_to(place, True) v._clear_data() v_gpu._share_buffer_to(v) _broadcast_data_help(v, v.shape, v.dtype, hcg) else: _broadcast_object_list_help(v, hcg) for k, v in kwargs.items(): if isinstance(v, core.eager.Tensor): with framework.no_grad(): if in_dygraph_mode() and not eval(f"v.place.is_{dev}_place")(): v_gpu = v._copy_to(place, True) v._clear_data() v_gpu._share_buffer_to(v) _broadcast_data_help(v, v.shape, v.dtype, hcg) kwargs[k] = v else: kwargs[k] = _broadcast_object_list_help(v, hcg) return inputs, kwargs def broadcast_mp_parameters(model, hcg): model_parallel_group = hcg.get_model_parallel_group() src_rank = hcg.get_model_parallel_group_src_rank() sync_params_buffers( model, model_parallel_group, src_rank, is_model_parallel=True ) def broadcast_dp_parameters(model, hcg): data_parallel_group = hcg.get_data_parallel_group() src_rank = hcg.get_data_parallel_group_src_rank() sync_params_buffers( model, data_parallel_group, src_rank, is_model_parallel=False ) def fused_allreduce_gradients_with_group( parameter_list, group, bucket_size=128 * 1024 * 1024, scale=None ): apply_func = ( _apply_collective_grads_eager if in_dygraph_mode() else _apply_collective_grads ) with framework.no_grad(): apply_func(parameter_list, group, bucket_size, scale) def fused_allreduce_gradients(parameter_list, hcg): data_parallel_group = None if hcg is None else hcg.get_data_parallel_group() logger.debug("dp start fuse allreduce gradients") fused_allreduce_gradients_with_group(parameter_list, data_parallel_group) def sharding_reduce_gradients(parameter_list, hcg): # TODO allreduce --> reduce # TODO merge grad / nrank with dp logger.debug("sharding start gradients sync") with framework.no_grad(): sharding_nrank = hcg.get_sharding_parallel_group().nranks for param in parameter_list: g_var = None if param.trainable and (param._grad_ivar() is not None): g_var = param._grad_ivar() if param.trainable and hasattr(param, "main_grad"): assert ( param._grad_ivar() is None ), "param.grad should be None when using main_grad" g_var = param.main_grad if g_var is not None: g_var.scale_(1.0 / sharding_nrank) paddle.distributed.all_reduce( g_var, group=hcg.get_sharding_parallel_group(), sync_op=True, ) def broadcast_sharding_parameters(model, hcg): # TODO TO save memory, use un-fused broadcast to avoid potentional OOM logger.debug("sharding start init parameters sync") sharding_parallel_group = hcg.get_sharding_parallel_group() src_rank = hcg.get_sharding_parallel_group_src_rank() sync_params_buffers( model, sharding_parallel_group, src_rank, is_model_parallel=False )