# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from .base_cost import CompOpCost, register_op_cost @register_op_cost class AdamOpCost(CompOpCost): OP_TYPE = "adam" def __init__(self, op=None, op_desc=None, cluster=None): super(AdamOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ArgsortOpCost(CompOpCost): OP_TYPE = "argsort" def __init__(self, op=None, op_desc=None, cluster=None): super(ArgsortOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class AssignOpCost(CompOpCost): OP_TYPE = "assign" def __init__(self, op=None, op_desc=None, cluster=None): super(AssignOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class AssignValueOpCost(CompOpCost): OP_TYPE = "assign_value" def __init__(self, op=None, op_desc=None, cluster=None): super(AssignValueOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class BeamSearchOpCost(CompOpCost): OP_TYPE = "beam_search" def __init__(self, op=None, op_desc=None, cluster=None): super(BeamSearchOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class BeamSearchDecodeOpCost(CompOpCost): OP_TYPE = "beam_search_decode" def __init__(self, op=None, op_desc=None, cluster=None): super(BeamSearchDecodeOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class CastOpCost(CompOpCost): OP_TYPE = "cast" def __init__(self, op=None, op_desc=None, cluster=None): super(CastOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ConcatOpCost(CompOpCost): OP_TYPE = "concat" def __init__(self, op=None, op_desc=None, cluster=None): super(ConcatOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class DropoutOpCost(CompOpCost): OP_TYPE = "dropout" def __init__(self, op=None, op_desc=None, cluster=None): super(DropoutOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class DropoutGradOpCost(CompOpCost): OP_TYPE = "dropout_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(DropoutGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseAddOpCost(CompOpCost): OP_TYPE = "elementwise_add" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseAddOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseAddGradOpCost(CompOpCost): OP_TYPE = "elementwise_add_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseAddGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseDivOpCost(CompOpCost): OP_TYPE = "elementwise_div" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseDivOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseDivGradOpCost(CompOpCost): OP_TYPE = "elementwise_div_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseDivGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseMulOpCost(CompOpCost): OP_TYPE = "elementwise_mul" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseMulOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseMulGradOpCost(CompOpCost): OP_TYPE = "elementwise_mul_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseMulGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseSubOpCost(CompOpCost): OP_TYPE = "elementwise_sub" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseSubOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ElementwiseSubGradOpCost(CompOpCost): OP_TYPE = "elementwise_sub_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(ElementwiseSubGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class EqualOpCost(CompOpCost): OP_TYPE = "equal" def __init__(self, op=None, op_desc=None, cluster=None): super(EqualOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class EmbeddingOpCost(CompOpCost): OP_TYPE = "c_embedding" def __init__(self, op=None, op_desc=None, cluster=None): super(EmbeddingOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class EmbeddingGradOpCost(CompOpCost): OP_TYPE = "c_embedding_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(EmbeddingGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class FillConstantOpCost(CompOpCost): OP_TYPE = "fill_constant" def __init__(self, op=None, op_desc=None, cluster=None): super(FillConstantOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class FillConstantBatchSizeLikeOpCost(CompOpCost): OP_TYPE = "fill_constant_batch_size_like" def __init__(self, op=None, op_desc=None, cluster=None): super(FillConstantBatchSizeLikeOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class FusedSoftmaxMaskUpperTriangleOpCost(CompOpCost): OP_TYPE = "fused_softmax_mask_upper_triangle" def __init__(self, op=None, op_desc=None, cluster=None): super(FusedSoftmaxMaskUpperTriangleOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class FusedSoftmaxMaskUpperTriangleGradOpCost(CompOpCost): OP_TYPE = "fused_softmax_mask_upper_triangle_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(FusedSoftmaxMaskUpperTriangleGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class GatherOpCost(CompOpCost): OP_TYPE = "gather" def __init__(self, op=None, op_desc=None, cluster=None): super(GatherOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class GeluOpCost(CompOpCost): OP_TYPE = "gelu" def __init__(self, op=None, op_desc=None, cluster=None): super(GeluOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class GeluGradOpCost(CompOpCost): OP_TYPE = "gelu_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(GeluGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class GreaterEqualOpCost(CompOpCost): OP_TYPE = "greater_equal" def __init__(self, op=None, op_desc=None, cluster=None): super(GreaterEqualOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class IncrementOpCost(CompOpCost): OP_TYPE = "increment" def __init__(self, op=None, op_desc=None, cluster=None): super(IncrementOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class IsEmptyOpCost(CompOpCost): OP_TYPE = "is_empty" def __init__(self, op=None, op_desc=None, cluster=None): super(IsEmptyOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LayerNormOpCost(CompOpCost): OP_TYPE = "layer_norm" def __init__(self, op=None, op_desc=None, cluster=None): super(LayerNormOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LayerNormGradOpCost(CompOpCost): OP_TYPE = "layer_norm_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(LayerNormGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LessThanOpCost(CompOpCost): OP_TYPE = "less_than" def __init__(self, op=None, op_desc=None, cluster=None): super(LessThanOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LogicalNotOpCost(CompOpCost): OP_TYPE = "logical_not" def __init__(self, op=None, op_desc=None, cluster=None): super(LogicalNotOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LogicalAndOpCost(CompOpCost): OP_TYPE = "logical_and" def __init__(self, op=None, op_desc=None, cluster=None): super(LogicalAndOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LodResetOpCost(CompOpCost): OP_TYPE = "lod_reset" def __init__(self, op=None, op_desc=None, cluster=None): super(LodResetOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LogOpCost(CompOpCost): OP_TYPE = "log" def __init__(self, op=None, op_desc=None, cluster=None): super(LogOpCost, self).__init__(op=op, op_desc=op_desc, cluster=cluster) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LookupTableV2OpCost(CompOpCost): OP_TYPE = "lookup_table_v2" def __init__(self, op=None, op_desc=None, cluster=None): super(LookupTableV2OpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class LookupTableV2GradOpCost(CompOpCost): OP_TYPE = "lookup_table_v2_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(LookupTableV2GradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MatmulOpCost(CompOpCost): OP_TYPE = "matmul" def __init__(self, op=None, op_desc=None, cluster=None): super(MatmulOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MatmulGradOpCost(CompOpCost): OP_TYPE = "matmul_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(MatmulGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MatmulV2OpCost(CompOpCost): OP_TYPE = "matmul_v2" def __init__(self, op=None, op_desc=None, cluster=None): super(MatmulV2OpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MatmulV2GradOpCost(CompOpCost): OP_TYPE = "matmul_v2_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(MatmulV2GradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MemcpyOpCost(CompOpCost): OP_TYPE = "memcpy" def __init__(self, op=None, op_desc=None, cluster=None): super(MemcpyOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MulOpCost(CompOpCost): OP_TYPE = "mul" def __init__(self, op=None, op_desc=None, cluster=None): super(MulOpCost, self).__init__(op=op, op_desc=op_desc, cluster=cluster) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class MulGradOpCost(CompOpCost): OP_TYPE = "mul_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(MulGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class OneHotOpCost(CompOpCost): OP_TYPE = "one_hot" def __init__(self, op=None, op_desc=None, cluster=None): super(OneHotOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ReadFromArrayOpCost(CompOpCost): OP_TYPE = "read_from_array" def __init__(self, op=None, op_desc=None, cluster=None): super(ReadFromArrayOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ReduceSumOpCost(CompOpCost): OP_TYPE = "reduce_sum" def __init__(self, op=None, op_desc=None, cluster=None): super(ReduceSumOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ReduceSumGradOpCost(CompOpCost): OP_TYPE = "reduce_sum_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(ReduceSumGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class Reshape2OpCost(CompOpCost): OP_TYPE = "reshape2" def __init__(self, op=None, op_desc=None, cluster=None): super(Reshape2OpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class Reshape2GradOpCost(CompOpCost): OP_TYPE = "reshape2_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(Reshape2GradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ReduceMeanOpCost(CompOpCost): OP_TYPE = "reduce_mean" def __init__(self, op=None, op_desc=None, cluster=None): super(ReduceMeanOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ReduceMeanGradOpCost(CompOpCost): OP_TYPE = "reduce_mean_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(ReduceMeanGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SamplingIdOpCost(CompOpCost): OP_TYPE = "sampling_id" def __init__(self, op=None, op_desc=None, cluster=None): super(SamplingIdOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class ScaleOpCost(CompOpCost): OP_TYPE = "scale" def __init__(self, op=None, op_desc=None, cluster=None): super(ScaleOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SliceOpCost(CompOpCost): OP_TYPE = "slice" def __init__(self, op=None, op_desc=None, cluster=None): super(SliceOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SoftmaxOpCost(CompOpCost): OP_TYPE = "softmax" def __init__(self, op=None, op_desc=None, cluster=None): super(SoftmaxOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SoftmaxGradOpCost(CompOpCost): OP_TYPE = "softmax_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(SoftmaxGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SoftmaxWithCrossEntropyOpCost(CompOpCost): OP_TYPE = "softmax_with_cross_entropy" def __init__(self, op=None, op_desc=None, cluster=None): super(SoftmaxWithCrossEntropyOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SoftmaxWithCrossEntropyGradOpCost(CompOpCost): OP_TYPE = "softmax_with_cross_entropy_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(SoftmaxWithCrossEntropyGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SplitOpCost(CompOpCost): OP_TYPE = "split" def __init__(self, op=None, op_desc=None, cluster=None): super(SplitOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class Squeeze2OpCost(CompOpCost): OP_TYPE = "squeeze2" def __init__(self, op=None, op_desc=None, cluster=None): super(Squeeze2OpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SquareOpCost(CompOpCost): OP_TYPE = "square" def __init__(self, op=None, op_desc=None, cluster=None): super(SquareOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SquareGradOpCost(CompOpCost): OP_TYPE = "square_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(SquareGradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class SumOpCost(CompOpCost): OP_TYPE = "sum" def __init__(self, op=None, op_desc=None, cluster=None): super(SumOpCost, self).__init__(op=op, op_desc=op_desc, cluster=cluster) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class TopKOpCost(CompOpCost): OP_TYPE = "top_k" def __init__(self, op=None, op_desc=None, cluster=None): super(TopKOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class Transpose2OpCost(CompOpCost): OP_TYPE = "transpose2" def __init__(self, op=None, op_desc=None, cluster=None): super(Transpose2OpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class Transpose2GradOpCost(CompOpCost): OP_TYPE = "transpose2_grad" def __init__(self, op=None, op_desc=None, cluster=None): super(Transpose2GradOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class Unsqueeze2OpCost(CompOpCost): OP_TYPE = "unsqueeze2" def __init__(self, op=None, op_desc=None, cluster=None): super(Unsqueeze2OpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0 @register_op_cost class WriteToArrayOpCost(CompOpCost): OP_TYPE = "write_to_array" def __init__(self, op=None, op_desc=None, cluster=None): super(WriteToArrayOpCost, self).__init__( op=op, op_desc=op_desc, cluster=cluster ) # For a concrete COMP OP, the calc_time and calc_flops function need to be overrided def calc_flops(self): # NOTE: The actual formula will be filled in the future return 0 def calc_time(self): # NOTE: The actual formula will be filled in the future return 0