// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/prod_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/xpu/reduce.h" namespace phi { template void ProdKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& dims, bool keep_dim, bool reduce_all, DenseTensor* out) { reduce_all = recompute_reduce_all(x, dims, reduce_all); using XPUType = typename XPUTypeTrait::Type; auto f = [](xpu::Context* ctx, const XPUType* x, XPUType* y, const std::vector& xdims, const std::vector& reduce_dims) { return xpu::reduce_prod(ctx, x, y, xdims, reduce_dims); }; int r = XPUReduce( dev_ctx, x, dims.GetData(), keep_dim, reduce_all, out, f); PADDLE_ENFORCE_XDNN_SUCCESS(r, "reduce_prod"); } } // namespace phi PD_REGISTER_KERNEL(prod, XPU, ALL_LAYOUT, phi::ProdKernel, float) {}