// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/masked_select_grad_kernel.h" #include #include #include #include #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/expand_grad_kernel.h" #include "paddle/phi/kernels/expand_kernel.h" #include "paddle/phi/kernels/funcs/common_shape.h" #include "paddle/phi/kernels/funcs/reduce_function.h" #include "paddle/phi/kernels/funcs/select_impl.cu.h" namespace phi { template struct MaskedSelectGradFunctor { HOSTDEVICE MaskedSelectGradFunctor() = default; HOSTDEVICE inline void operator()(OutT* out, const MT* mask, const InT* value, int num) { int read_fix = 0; for (int idx = 0; idx < num; idx++) { if (mask[idx]) { out[idx] = value[read_fix++]; } else { out[idx] = 0; } } } }; template void MaskedSelectGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& mask, const DenseTensor& out_grad, DenseTensor* x_grad) { // x_grad.size() == x.size() // x.size() == mask.size(), no broadcast, expand_mask = false, expand_x = // false x.size() < mask.size(), x broadcast to mask, expand_mask = false, // expand_x = true x.size() > mask.size(), mask broadcast to x, epxand_mask = // true, expand_x = false DenseTensor mask_expand; DenseTensor x_grad_expand; bool expand_x = false; auto expanded_size = funcs::MatrixGetBroadcastBatchPortion( vectorize(x_grad->dims()), vectorize(mask.dims())); auto expaned_dims = make_ddim(expanded_size); if (mask.dims() != expaned_dims) { ExpandKernel( dev_ctx, mask, IntArray(expanded_size), &mask_expand); } else { mask_expand = mask; } if (x_grad->dims() != expaned_dims) { x_grad_expand = Empty(dev_ctx, IntArray(expanded_size)); expand_x = true; } else { expand_x = false; } dev_ctx.template Alloc(x_grad); auto mask_size = mask_expand.numel(); if (mask_size <= 0) return; using Functor = MaskedSelectGradFunctor; DenseTensor* x_grad_tmp = x_grad; if (expand_x) { x_grad_tmp = &x_grad_expand; } phi::funcs::SelectKernel( dev_ctx, mask_expand, out_grad, x_grad_tmp, Functor()); if (expand_x) { ExpandGradKernel( dev_ctx, x, x_grad_expand, IntArray(expanded_size), x_grad); } } } // namespace phi PD_REGISTER_KERNEL(masked_select_grad, GPU, ALL_LAYOUT, phi::MaskedSelectGradKernel, float, double, int, int64_t, phi::dtype::float16, phi::dtype::bfloat16) {}