# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define specitial functions used in computer vision task from ...fluid.dygraph import layers from .. import functional __all__ = ['PixelShuffle'] class PixelShuffle(layers.Layer): """ PixelShuffle Layer This operator rearranges elements in a tensor of shape [N, C, H, W] to a tensor of shape [N, C/upscale_factor**2, H*upscale_factor, W*upscale_factor], or from shape [N, H, W, C] to [N, H*upscale_factor, W*upscale_factor, C/upscale_factor**2]. This is useful for implementing efficient sub-pixel convolution with a stride of 1/upscale_factor. Please refer to the paper: `Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network `_ . by Shi et. al (2016) for more details. Parameters: upscale_factor(int): factor to increase spatial resolution. data_format (str): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`. Shape: - x: 4-D tensor with shape: (N, C, H, W) or (N, H, W, C). - out: 4-D tensor with shape: (N, C/upscale_factor**2, H*upscale_factor, W*upscale_factor) or (N, H*upscale_factor, W*upscale_factor, C/upscale_factor^2). Examples: .. code-block:: python import paddle import paddle.nn as nn import numpy as np x = np.random.randn(2, 9, 4, 4).astype(np.float32) x_var = paddle.to_tensor(x) pixel_shuffle = nn.PixelShuffle(3) out_var = pixel_shuffle(x_var) out = out_var.numpy() print(out.shape) # (2, 1, 12, 12) """ def __init__(self, upscale_factor, data_format="NCHW", name=None): super(PixelShuffle, self).__init__() if not isinstance(upscale_factor, int): raise TypeError("upscale factor must be int type") if data_format not in ["NCHW", "NHWC"]: raise ValueError("Data format should be 'NCHW' or 'NHWC'." "But recevie data format: {}".format(data_format)) self._upscale_factor = upscale_factor self._data_format = data_format self._name = name def forward(self, x): return functional.pixel_shuffle(x, self._upscale_factor, self._data_format, self._name) def extra_repr(self): main_str = 'upscale_factor={}'.format(self._upscale_factor) if self._data_format is not 'NCHW': main_str += ', data_format={}'.format(self._data_format) if self._name is not None: main_str += ', name={}'.format(self._name) return main_str