// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/pool_kernel.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void Pool2dKernel(const Context& dev_ctx, const DenseTensor& x, const IntArray& kernel_size, const std::vector& strides, const std::vector& paddings, bool ceil_mode, bool exclusive, const std::string& data_format UNUSED, const std::string& pooling_type, bool global_pooling, bool adaptive, const std::string& padding_algorithm, DenseTensor* out) { funcs::PoolingOneDNNHandler handler(dev_ctx, pooling_type, kernel_size, strides, paddings, global_pooling, padding_algorithm, ceil_mode, exclusive, adaptive, &x, out); bool is_test = dev_ctx.HasDnnAttr("is_test") ? PADDLE_GET_CONST(bool, dev_ctx.GetDnnAttr("is_test")) : false; auto src_memory = handler.AcquireSrcMemory(&x); auto dst_memory = handler.AcquireDstMemory(out); auto pool_p = handler.AcquireForwardPrimitive(); auto& astream = OneDNNContext::tls().get_stream(); if (is_test == false && pooling_type == "max") { // Training auto workspace_memory = handler.AcquireWorkspaceMemory(dev_ctx, "Out"); pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}, {DNNL_ARG_WORKSPACE, *workspace_memory}}); } else { // Inference pool_p->execute(astream, {{DNNL_ARG_SRC, *src_memory}, {DNNL_ARG_DST, *dst_memory}}); } astream.wait(); out->set_mem_desc(dst_memory->get_desc()); } phi::KernelKey PoolOpGetKernelTypeForVar( const GetKernelTypeForVarContext* ctx) { const phi::DenseTensor& tensor = ctx->GetTensor(); const phi::KernelKey& expected_kernel_type = ctx->GetKernelKey(); #ifdef PADDLE_WITH_MKLDNN if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) && (tensor.layout() != phi::DataLayout::ONEDNN)) { const AttributeMap& attrs = ctx->GetAttrs(); auto it = attrs.find("data_format"); const std::string data_format = PADDLE_GET_CONST(std::string, it->second); auto dl = phi::StringToDataLayout(data_format); // Some models may have intentionally set "AnyLayout" for pool // op. Treat this as NCHW (default data_format value) if (dl != phi::DataLayout::kAnyLayout) { return phi::KernelKey(tensor.place(), dl, expected_kernel_type.dtype()); } } #endif return phi::KernelKey( tensor.place(), tensor.layout(), expected_kernel_type.dtype()); } } // namespace phi PD_REGISTER_KERNEL(pool2d, OneDNN, ONEDNN, phi::Pool2dKernel, float, int8_t, uint8_t, phi::dtype::bfloat16) { kernel->get_kerneltype_forvar_fn_ = phi::PoolOpGetKernelTypeForVar; }