# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard from op_test import OpTest from paddle.fluid.framework import _test_eager_guard class TestHistogramOpAPI(unittest.TestCase): """Test histogram api.""" def test_static_graph(self): startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): inputs = fluid.data(name='input', dtype='int64', shape=[2, 3]) output = paddle.histogram(inputs, bins=5, min=1, max=5) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) actual = np.array(res[0]) expected = np.array([0, 3, 0, 2, 1]).astype(np.int64) self.assertTrue( (actual == expected).all(), msg='histogram output is wrong, out =' + str(actual)) def test_dygraph(self): with fluid.dygraph.guard(): inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64) inputs = fluid.dygraph.to_variable(inputs_np) actual = paddle.histogram(inputs, bins=5, min=1, max=5) expected = np.array([0, 3, 0, 2, 1]).astype(np.int64) self.assertTrue( (actual.numpy() == expected).all(), msg='histogram output is wrong, out =' + str(actual.numpy())) with _test_eager_guard(): inputs_np = np.array([[2, 4, 2], [2, 5, 4]]).astype(np.int64) inputs = paddle.to_tensor(inputs_np) actual = paddle.histogram(inputs, bins=5, min=1, max=5) self.assertTrue((actual.numpy() == expected).all(), msg='histogram output is wrong, out =' + str(actual.numpy())) class TestHistogramOpError(unittest.TestCase): """Test histogram op error.""" def run_network(self, net_func): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): net_func() exe = fluid.Executor() exe.run(main_program) def test_bins_error(self): """Test bins should be greater than or equal to 1.""" def net_func(): input_value = paddle.fluid.layers.fill_constant(shape=[3, 4], dtype='float32', value=3.0) paddle.histogram(input=input_value, bins=-1, min=1, max=5) with self.assertRaises(IndexError): self.run_network(net_func) def test_min_max_error(self): """Test max must be larger or equal to min.""" def net_func(): input_value = paddle.fluid.layers.fill_constant(shape=[3, 4], dtype='float32', value=3.0) paddle.histogram(input=input_value, bins=1, min=5, max=1) with self.assertRaises(ValueError): self.run_network(net_func) def test_min_max_range_error(self): """Test range of min, max is not finite""" def net_func(): input_value = paddle.fluid.layers.fill_constant(shape=[3, 4], dtype='float32', value=3.0) paddle.histogram(input=input_value, bins=1, min=-np.inf, max=5) with self.assertRaises(TypeError): self.run_network(net_func) def test_type_errors(self): with program_guard(Program()): # The input type must be Variable. self.assertRaises(TypeError, paddle.histogram, 1, bins=5, min=1, max=5) # The input type must be 'int32', 'int64', 'float32', 'float64' x_bool = fluid.data(name='x_bool', shape=[4, 3], dtype='bool') self.assertRaises(TypeError, paddle.histogram, x_bool, bins=5, min=1, max=5) class TestHistogramOp(OpTest): def setUp(self): self.op_type = "histogram" self.init_test_case() np_input = np.random.uniform(low=0.0, high=20.0, size=self.in_shape) self.python_api = paddle.histogram self.inputs = {"X": np_input} self.init_attrs() Out, _ = np.histogram(np_input, bins=self.bins, range=(self.min, self.max)) self.outputs = {"Out": Out.astype(np.int64)} def init_test_case(self): self.in_shape = (10, 12) self.bins = 5 self.min = 1 self.max = 5 def init_attrs(self): self.attrs = {"bins": self.bins, "min": self.min, "max": self.max} def test_check_output(self): self.check_output(check_eager=True) if __name__ == "__main__": paddle.enable_static() unittest.main()