# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is unit test of Test shuffle_batch Op.""" import os import unittest import numpy as np from eager_op_test import OpTest from paddle import fluid class TestShuffleBatchOpBase(OpTest): def gen_random_array(self, shape, low=0, high=1): rnd = (high - low) * np.random.random(shape) + low return rnd.astype(self.dtype) def get_shape(self): return (10, 10, 5) def _get_places(self): # NOTE: shuffle_batch is not supported on Windows if os.name == 'nt': return [fluid.CPUPlace()] return super()._get_places() def setUp(self): self.op_type = 'shuffle_batch' self.dtype = np.float64 self.shape = self.get_shape() x = self.gen_random_array(self.shape) seed = np.random.random_integers(low=10, high=100, size=(1,)).astype( 'int64' ) self.inputs = {'X': x, 'Seed': seed} self.outputs = { 'Out': np.array([]).astype(x.dtype), 'ShuffleIdx': np.array([]).astype('int64'), 'SeedOut': np.array([]).astype(seed.dtype), } self.attrs = {'startup_seed': 1} def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): x = np.copy(self.inputs['X']) y = None for out in outs: if out.shape == x.shape: y = np.copy(out) break assert y is not None sort_x = self.sort_array(x) sort_y = self.sort_array(y) np.testing.assert_array_equal(sort_x, sort_y) def sort_array(self, array): shape = array.shape new_shape = [-1, shape[-1]] arr_list = np.reshape(array, new_shape).tolist() arr_list.sort(key=lambda x: x[0]) return np.reshape(np.array(arr_list), shape) def test_check_grad(self): self.check_grad(['X'], 'Out', check_dygraph=False) class TestShuffleBatchOp2(TestShuffleBatchOpBase): def get_shape(self): return (4, 30) if __name__ == '__main__': unittest.main()