# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re PREFIX_TENSOR_NAME = 'dense_' def parse_args(api_name, args_str): """ Returns: { inputs : { names : [] // list of input names input_info : { input_name : type } } attrs: { names : [] // list of attribute names attr_info : { attr_name : (type, default_value)} } args_declare : "str" // str of funtion params with default value. Example: (..., bool flag=false) args_define : "str" // str of funtion params without default value. Example: (..., bool flag) } """ inputs = {'names': [], 'input_info': {}} attrs = {'names': [], 'attr_info': {}} args_str = args_str.strip() assert args_str.startswith('(') and args_str.endswith(')'), \ f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml." args_str = args_str[1:-1] args_list = args_str.split(',') input_types = [ 'const Tensor&', 'const Tensor &', 'const std::vector&', 'const std::vector &' ] attr_types = ['const Scalar&', 'const Scalar &', 'const ScalarArray&', 'const ScalarArray &', \ 'int', 'int32_t', 'int64_t', 'size_t', 'float', 'double', 'bool', \ 'const std::vector&', 'Backend', 'DataLayout', 'DataType'] args_declare_str = "" args_define_str = "" for item in args_list: item = item.strip() # match the input tensor has_input = False for in_type in input_types: if item.startswith(in_type): input_name = item[len(in_type):].strip() assert len(input_name) > 0, \ f"The input tensor name should not be empty. Please check the args of {api_name} in yaml." assert len(attrs['names']) == 0, \ f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml" inputs['names'].append(input_name) inputs['input_info'][input_name] = in_type args_declare_str = args_declare_str + in_type + ' ' + input_name + ', ' args_define_str = args_define_str + in_type + ' ' + input_name + ', ' has_input = True break if has_input: continue # match the attribute for attr_type in attr_types: if item.startswith(attr_type): attr_name = item[len(attr_type):].strip() assert len(attr_name) > 0, \ f"The attribute name should not be empty. Please check the args of {api_name} in yaml." default_value = None if '=' in attr_name: attr_infos = attr_name.split('=') attr_name = attr_infos[0].strip() default_value = attr_infos[1].strip() default_value_str = "" if default_value is None else '=' + default_value args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', ' args_define_str = args_define_str + attr_type + ' ' + attr_name + ', ' attrs['names'].append(attr_name) attrs['attr_info'][attr_name] = (attr_type, default_value) break args = { 'inputs': inputs, 'attrs': attrs, 'args_declare': args_declare_str[:-2], 'args_define': args_define_str[:-2] } return args def parse_output(api_name, output_config): def parse_output_item(output_item): alllowd_output_types = ['Tensor', 'std::vector'] if re.search(r'\(\w*\)', output_item): result = re.search( r"(?P[a-zA-Z0-9_<>]+)\s*\((?P\w+)\)", output_item) out_type = result.group('out_type') assert out_type in alllowd_output_types, \ f"{api_name} : Output type error: the output type only support Tensor and std::vector, \ but now is {out_type}." return out_type, result.group('name') else: if output_item.strip() in alllowd_output_types: return output_item.strip(), 'out' else: raise ValueError( "{} : Output type error: the output type only support Tensor and std::vector, \ but now is {}.".format(api_name, out_type)) temp_list = output_config.split(',') if len(temp_list) == 1: out_type, out_name = parse_output_item(temp_list[0]) return out_type, out_name else: out_type_list = [] out_name_list = [] for output_item in temp_list: out_type, out_name = parse_output_item(output_item) out_type_list.append(out_type) out_name_list.append(out_name) return "std::tuple<" + ",".join(out_type_list) + ">", ", ".join( out_name_list) def gene_kernel_select(api, input_names, attrs, kernel) -> str: kernel_key_item_init = """ Backend kernel_backend = Backend::UNDEFINED; DataLayout kernel_layout = DataLayout::UNDEFINED; DataType kernel_data_type = DataType::UNDEFINED; """ # Check the tensor options attr_backend_count = 0 attr_layout_count = 0 attr_data_type_count = 0 for attr_name in attrs['names']: if attrs['attr_info'][attr_name][0] == 'Backend': assert kernel['backend'] is not None, \ f"{api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually." attr_backend_count = attr_backend_count + 1 if attrs['attr_info'][attr_name][0] == 'DataLayout': assert kernel['layout'] is not None, \ f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually." attr_layout_count = attr_layout_count + 1 if attrs['attr_info'][attr_name][0] == 'DataType': assert kernel['data_type'] is not None, \ f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually." attr_data_type_count = attr_data_type_count + 1 # preprocess kernel configures kernel_select_code = "" if kernel['backend'] is not None: if '>' in kernel['backend']: vars_list = kernel['backend'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \ f"{api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type." kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: args_str = "" for ele in kernel['backend'].split(','): args_str = args_str + ele.strip() + ', ' kernel_select_code = kernel_select_code + f""" kernel_backend = ParseBackend({args_str[:-2]}); """ if kernel['layout'] is not None: if '>' in kernel['layout']: vars_list = kernel['layout'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}." assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \ f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type." kernel_select_code = kernel_select_code + f""" kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: vars_list = kernel['layout'].split(',') assert len( vars_list ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}." kernel_select_code = kernel_select_code + f""" kernel_layout = ParseLayout({vars_list[0].strip()}); """ if kernel['data_type'] is not None: if '>' in kernel['data_type']: vars_list = kernel['data_type'].split('>') assert len( vars_list ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}." assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \ f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type." kernel_select_code = kernel_select_code + f""" kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); """ else: vars_list = kernel['data_type'].split(',') assert len( vars_list ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}." kernel_select_code = kernel_select_code + f""" kernel_data_type = ParseDataType({vars_list[0].strip()}); """ if len(input_names) == 0: assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \ f"{api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'." kernel_select_args = "" for input_name in input_names: kernel_select_args = kernel_select_args + input_name + ", " if len(kernel_select_args) > 2: kernel_select_args = kernel_select_args[:-2] kernel_select_code = kernel_key_item_init + kernel_select_code if len(input_names) > 0: kernel_select_code = kernel_select_code + f""" if (kernel_backend == Backend::UNDEFINED || kernel_layout == DataLayout::UNDEFINED || kernel_data_type == DataType::UNDEFINED ) {{ auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); if (kernel_backend == Backend::UNDEFINED) {{ kernel_backend = kernel_key.backend(); }} if (kernel_layout == DataLayout::UNDEFINED) {{ kernel_layout = kernel_key.layout(); }} if (kernel_data_type == DataType::UNDEFINED) {{ kernel_data_type = kernel_key.dtype(); }} }}""" kernel_select_code = kernel_select_code + f""" auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( "{kernel['func']}", {{kernel_backend, kernel_layout, kernel_data_type}}); VLOG(6) << "{api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; VLOG(6) << "{api} API kernel: " << kernel;""" return kernel_select_code def gene_infer_meta(input_names, attr_names, infer_meta) -> str: infer_meta_params = infer_meta['param'] if infer_meta[ 'param'] is not None else input_names + attr_names param_code = "" for param in infer_meta_params: if param in input_names: param_code = param_code + "GetDenseTensorMeta(*" + PREFIX_TENSOR_NAME + param + "), " elif param in attr_names: param_code = param_code + param + ", " elif isinstance(param, str): param_code = param_code + "\"" + param + "\", " elif isinstance(param, bool): param_code = param_code + str(param).lower() + ", " else: param_code = param_code + str(param) + ", " param_code = param_code[:-2] return f""" auto out_meta = pten::{infer_meta['func']}({param_code}); """ def get_kernel_args(input_names, attrs, kernel_param): input_tensor_code = "" for input_name in input_names: # set input code input_tensor_code = input_tensor_code + f""" auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});""" attr_names = attrs['names'] if kernel_param is None: kernel_param = input_names + attr_names kernel_args = "*dev_ctx, " for param in kernel_param: if param in input_names: kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", " elif param in attr_names: # set attr for kernel_context if 'ScalarArray' in attrs['attr_info'][param][0]: param = 'pten::ScalarArray(' + param + ')' elif 'Scalar' in attrs['attr_info'][param][0]: param = 'pten::Scalar(' + param + ')' kernel_args = kernel_args + param + ", " elif isinstance(param, bool): kernel_args = kernel_args + str(param).lower() + ", " else: kernel_args = kernel_args + str(param) + ", " return input_tensor_code, kernel_args[:-2] def gene_output(output_type): kernel_output = "" output_create = f""" {output_type} out;""" if output_type == 'Tensor' or output_type == 'std::vector': kernel_output = 'dense_out' output_create = output_create + """ auto dense_out = SetKernelOutput(out_meta, kernel_backend, &out);""" elif re.match(r'std::tuple<.*>$', output_type): out_num = output_type.count('Tensor') for i in range(out_num): kernel_output = kernel_output + f'dense_out_{i}, ' output_create = output_create + f""" auto dense_out_{i} = SetKernelOutput(std::get<{i}>(out_meta), kernel_backend, &std::get<{i}>(out));""" kernel_output = kernel_output[:-2] return kernel_output, output_create