# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear from paddle.fluid.framework import _test_eager_guard class SimpleImgConvPool(fluid.dygraph.Layer): def __init__(self, num_channels, num_filters, filter_size, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, act=None, use_cudnn=False, dtype='float32', param_attr=None, bias_attr=None): super(SimpleImgConvPool, self).__init__() self._conv2d = Conv2D(num_channels=num_channels, num_filters=num_filters, filter_size=filter_size, stride=conv_stride, padding=conv_padding, dilation=conv_dilation, groups=conv_groups, param_attr=param_attr, bias_attr=bias_attr, use_cudnn=use_cudnn, dtype=dtype, act=act) self._pool2d = Pool2D(pool_size=pool_size, pool_type=pool_type, pool_stride=pool_stride, pool_padding=pool_padding, global_pooling=global_pooling, use_cudnn=use_cudnn) def forward(self, inputs): x = self._conv2d(inputs) x = self._pool2d(x) return x class MNIST(fluid.dygraph.Layer): def __init__(self, dtype="float32"): super(MNIST, self).__init__() self._simple_img_conv_pool_1 = SimpleImgConvPool(num_channels=3, num_filters=20, filter_size=5, pool_size=2, pool_stride=2, act="relu", dtype=dtype, use_cudnn=True) self._simple_img_conv_pool_2 = SimpleImgConvPool(num_channels=20, num_filters=50, filter_size=5, pool_size=2, pool_stride=2, act="relu", dtype=dtype, use_cudnn=True) self.pool_2_shape = 50 * 53 * 53 SIZE = 10 scale = (2.0 / (self.pool_2_shape**2 * SIZE))**0.5 self._linear = Linear( self.pool_2_shape, 10, param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=scale)), act="softmax", dtype=dtype) def forward(self, inputs, label): x = self._simple_img_conv_pool_1(inputs) x = self._simple_img_conv_pool_2(x) x = fluid.layers.reshape(x, shape=[-1, self.pool_2_shape]) cost = self._linear(x) loss = fluid.layers.cross_entropy(cost, label) avg_loss = paddle.mean(loss) return avg_loss class TestMnist(unittest.TestCase): def func_mnist_fp16(self): if not fluid.is_compiled_with_cuda(): return x = np.random.randn(1, 3, 224, 224).astype("float16") y = np.random.randint(10, size=[1, 1], dtype="int64") with fluid.dygraph.guard(fluid.CUDAPlace(0)): model = MNIST(dtype="float16") x = fluid.dygraph.to_variable(x) y = fluid.dygraph.to_variable(y) loss = model(x, y) print(loss.numpy()) def test_mnist_fp16(self): with _test_eager_guard(): self.func_mnist_fp16() self.func_mnist_fp16() if __name__ == "__main__": unittest.main()