// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/strided_slice_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/strided_slice.h" #include "paddle/phi/kernels/xpu/stride_slice_util.h" namespace phi { template void StridedSliceRawKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& axes, const IntArray& starts, const IntArray& ends, const IntArray& strides, const std::vector& infer_flags, const std::vector& decrease_axis, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; DDim in_dims = x.dims(); auto starts_ = starts.GetData(); auto ends_ = ends.GetData(); auto strides_ = strides.GetData(); std::vector out_dims_vector(in_dims.size(), -1); funcs::StridedSliceOutDims(starts_, ends_, strides_, axes, infer_flags, in_dims, decrease_axis, out_dims_vector.data(), axes.size(), false); DDim out_dims(phi::make_ddim(out_dims_vector)); out->Resize(out_dims); dev_ctx.template Alloc(out); std::vector xshape; std::vector starts_in(in_dims.size(), 0); std::vector ends_in; std::vector strides_in(in_dims.size(), 1); for (int i = 0; i < in_dims.size(); ++i) { xshape.emplace_back(in_dims[i]); ends_in.emplace_back(in_dims[i]); } int num = axes.size(); for (int i = 0; i < num; ++i) { PADDLE_ENFORCE_EQ( strides_[i] > 0, true, errors::InvalidArgument("Currently, XPU strided slice kernel does not ", "support reverse strided slice.")); int cur_axe = axes[i]; int st = starts_[i]; if (st > xshape[cur_axe]) { st = xshape[cur_axe]; } if (st < 0) { st += xshape[cur_axe]; } starts_in[cur_axe] = st; int end = ends_[i]; if (end > xshape[cur_axe]) { end = xshape[cur_axe]; } if (end < 0) { end += xshape[cur_axe]; } ends_in[cur_axe] = end; PADDLE_ENFORCE_EQ( st < end, true, errors::InvalidArgument("End index should be larger than", "start Index, this OP does not support", "reverse operator.")); strides_in[cur_axe] = strides_[i]; } if (is_strided_slice_special_case(xshape, starts_in, ends_in, strides_in)) { PADDLE_ENFORCE_EQ( x.numel(), out->numel() * 2, errors::PreconditionNotMet( "x.numel() should be equal to out->numel() * 2 in special case.")); /* * sample input: [1 2 3 4 5 6 7 8 9 10] * starts = [0/1] * strides = [2] * sample output: [1 3 5 7 9] (last value in starts is 0) * sample output: [2 4 6 8 10] (last value in starts is 1) */ xpu::ctx_guard RAII_GUARD(dev_ctx.x_context()); XPUType* x_transpose = RAII_GUARD.alloc_l3_or_gm(x.numel()); /* * step 1: transpose, input shape is (x.numel/2, 2): * input: * [1 2 * 3 4 * 5 6 * 7 8 * 9 10] * after transpose: * [1 3 5 7 9 * 2 4 6 8 10] */ // int transpose(Context* ctx, const T* x, T* y, const std::vector& // xshape, const std::vector& permute) int r = xpu::transpose(dev_ctx.x_context(), reinterpret_cast(x.data()), x_transpose, {x.numel() / 2, 2}, {1, 0}); PADDLE_ENFORCE_XDNN_SUCCESS(r, "transpose"); // step 2: if starts from 0, use "first half" data as result, otherwise use // "second half". int offset = 0; if (starts_in.back() == 1) { offset = x.numel() / 2; } // int copy(Context* ctx, const T* x, T* y, int64_t len) r = xpu::copy(dev_ctx.x_context(), x_transpose + offset, reinterpret_cast(out->data()), x.numel() / 2); PADDLE_ENFORCE_XDNN_SUCCESS(r, "copy"); return; } int r = xpu::strided_slice(dev_ctx.x_context(), reinterpret_cast(x.data()), reinterpret_cast(out->data()), xshape, starts_in, ends_in, strides_in); PADDLE_ENFORCE_XDNN_SUCCESS(r, "strided_slice"); } } // namespace phi PD_REGISTER_KERNEL(strided_slice_raw, XPU, ALL_LAYOUT, phi::StridedSliceRawKernel, int, int16_t, int64_t, float, phi::dtype::float16) {}