# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.common_ops_import import * from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type from ..fluid.framework import in_dygraph_mode __all__ = [ 'matmul', 'dot', # 'einsum', # 'morm', # 'transpose', 'dist', # 't', # 'cross', # 'cholesky', # 'tensordot' ] def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): """ Applies matrix multiplication to two tensors. Currently, the input tensors' rank can be any, but when the rank of any inputs is bigger than 3, this two inputs' rank should be equal. The actual behavior depends on the shapes of :math:`x`, :math:`y` and the flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically: - If a transpose flag is specified, the last two dimensions of the tensor are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the opposite: It is treated as :math:`[D, 1]` in nontransposed form and as :math:`[1, D]` in transposed form. - After transpose, the two tensors are 2-D or n-D and matrix multiplication performs in the following way. - If both are 2-D, they are multiplied like conventional matrices. - If either is n-D, it is treated as a stack of matrices residing in the last two dimensions and a batched matrix multiply supporting broadcast applies on the two tensors. Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and nontransposed, the prepended or appended dimension :math:`1` will be removed after matrix multiplication. Args: x (Variable): The input variable which is a Tensor or LoDTensor. y (Variable): The input variable which is a Tensor or LoDTensor. transpose_x (bool): Whether to transpose :math:`x` before multiplication. transpose_y (bool): Whether to transpose :math:`y` before multiplication. alpha (float): The scale of output. Default 1.0. name(str|None): A name for this layer(optional). If set None, the layer will be named automatically. Returns: Variable: The product Tensor (or LoDTensor) variable. Examples: .. code-block:: python # Examples to clarify shapes of the inputs and output # x: [B, ..., M, K], y: [B, ..., K, N] # paddle.matmul(x, y) # out: [B, ..., M, N] # x: [B, M, K], y: [B, K, N] # paddle.matmul(x, y) # out: [B, M, N] # x: [B, M, K], y: [K, N] # paddle.matmul(x, y) # out: [B, M, N] # x: [M, K], y: [K, N] # paddle.matmul(x, y) # out: [M, N] # x: [B, M, K], y: [K] # paddle.matmul(x, y) # out: [B, M] # x: [K], y: [K] # paddle.matmul(x, y) # out: [1] # x: [M], y: [N] # paddle.matmul(x, y, True, True) # out: [M, N] import paddle.fluid as fluid x = fluid.data(name='x', shape=[2, 3], dtype='float32') y = fluid.data(name='y', shape=[3, 2], dtype='float32') out = paddle.matmul(x, y, True, True) """ attrs = { 'transpose_X': transpose_x, 'transpose_Y': transpose_y, 'alpha': float(alpha), } if in_dygraph_mode(): return core.ops.matmul(x, y, 'transpose_X', transpose_x, 'transpose_Y', transpose_y, 'alpha', float(alpha)) def __check_input(x, y): var_names = {'x': x, 'y': y} for name, val in var_names.items(): check_variable_and_dtype( val, name, ['float16', 'float32', 'float64'], 'matmul') x_shape = list(x.shape) y_shape = list(y.shape) if len(x_shape) == 1: x_shape = [1] + x_shape if len(y_shape) == 1: y_shape = y_shape + [1] # check the inner 2 dimensions if transpose_x: x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2] if transpose_y: y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2] if x_shape[-1] != y_shape[-2]: assert (x_shape[-1] == -1) or (y_shape[-2] == -1), \ "After performing an optional transpose, Input X's width should be " \ "equal to Y's width for multiplication " \ "prerequisites. But received X's shape: %s, Y's shape: %s\n" % \ (x_shape, y_shape) if len(y_shape) > 2 and len(x_shape) > 2: for i, dim_x in enumerate(x_shape[:-2]): # don't check neg shape if dim_x < 0 or y_shape[i] < 0: continue if dim_x != y_shape[i]: raise ValueError( "When the matrix is larger than 2 dimensions, the higher " "dimensional values of the two matrices need to be equal. " "But received x_shape[%d] != y_shape[%d]. X's shape: %s, " "Y's shape: %s.\n" % (i, i, x_shape, y_shape)) __check_input(x, y) helper = LayerHelper('matmul', **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='matmul', inputs={'X': x, 'Y': y}, outputs={'Out': out}, attrs=attrs) return out def dist(x, y, p=2): """ This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure of distance. The shapes of x and y must be broadcastable. Where, z = x - y, When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z. .. math:: ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p} When p = inf, the inf-norm of z is the maximum element of z. .. math:: ||z||_\infty=\max_i |z_i| When p = -inf, the negative-inf-norm of z is the minimum element of z. .. math:: ||z||_{-\infty}=\min_i |z_i| Otherwise, the p-norm of z follows the formula, .. math:: ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}} Args: x (Variable): 1-D to 6-D Tensor, its data type is float32 or float64. y (Variable): 1-D to 6-D Tensor, its data type is float32 or float64. p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2. Returns: Variable: Tensor that is the p-norm of (x - y). Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(np.array([[3, 3],[3, 3]]).astype(np.float32)) y = fluid.dygraph.to_variable(np.array([[3, 3],[3, 1]]).astype(np.float32)) out = paddle.dist(x, y, 0) print(out.numpy()) # out = [1.] out = paddle.dist(x, y, 2) print(out.numpy()) # out = [2.] out = paddle.dist(x, y, float("inf")) print(out.numpy()) # out = [2.] out = paddle.dist(x, y, float("-inf")) print(out.numpy()) # out = [0.] """ check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist') check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist') check_type(p, 'p', (float, int), 'dist') helper = LayerHelper("dist", **locals()) out = helper.create_variable_for_type_inference(x.dtype) inputs = {"X": [x], "Y": [y]} outputs = {'Out': [out]} attrs = {"p": float(p)} helper.append_op( type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out def dot(x, y, name=None): """ This operator calculates inner product for vectors. .. note:: Only support 1-d Tensor(vector). Parameters: x(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype should be ``float32``, ``float64``, ``int32``, ``int64`` y(Variable): 1-D ``Tensor`` or ``LoDTensor``. Its datatype soulde be ``float32``, ``float64``, ``int32``, ``int64`` name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name` Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(np.random.uniform(0.1, 1, [10]).astype(np.float32)) y = fluid.dygraph.to_variable(np.random.uniform(1, 3, [10]).astype(np.float32)) z = paddle.dot(x, y) print(z.numpy()) """ op_type = 'dot' assert x is not None, 'x cannot be None in {}'.format(op_type) assert y is not None, 'y cannot be None in {}'.format(op_type) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type) check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'], op_type) helper = LayerHelper(op_type, **locals()) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) helper.append_op( type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}) return out