/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once extern "C" { #include } #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { inline void HashOutputSize(const framework::DDim& in_dims, std::vector& out_dims, // NOLINT int num_hash) { out_dims.reserve(in_dims.size() + 1); // copy all dims except the last one for (int i = 0u; i != in_dims.size() - 1; ++i) { out_dims.emplace_back(in_dims[i]); } out_dims.emplace_back(num_hash); // keep the last dim to 1 out_dims.emplace_back(1); } template class HashKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { auto* out_t = context.Output("Out"); auto* in_t = context.Input("X"); int64_t mod_by = context.Attr("mod_by"); int num_hash = context.Attr("num_hash"); auto in_dims = in_t->dims(); std::vector out_dims; HashOutputSize(in_dims, out_dims, num_hash); out_t->Resize(phi::make_ddim(out_dims)); auto* output = out_t->mutable_data(context.GetPlace()); auto seq_length = in_dims[0]; auto last_dim = in_dims[in_dims.size() - 1]; auto* input = in_t->data(); for (int idx = 0; idx < seq_length; ++idx) { for (int ihash = 0; ihash != num_hash; ++ihash) { output[idx * num_hash + ihash] = XXH64(input, sizeof(T) * last_dim, ihash) % mod_by; } input += last_dim; } out_t->set_lod(in_t->lod()); } }; } // namespace operators } // namespace paddle