# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from op_test import OpTest import paddle.fluid as fluid from paddle.fluid import core import unittest import paddle paddle.enable_static() class Decoder(object): def __init__(self, transitions, use_tag=True): self.transitions = transitions self.use_tag = use_tag self.start_idx, self.stop_idx = -1, -2 def __call__(self, inputs, length): bs, seq_len, n_label = inputs.shape inputs_t = np.transpose(inputs, (1, 0, 2)) trans_exp = np.expand_dims(self.transitions, axis=0) historys = [] left_length = np.array(length) max_seq_len = np.amax(left_length) left_length = np.expand_dims(left_length, 1) alpha = np.full((bs, n_label), -1e4, dtype='float32') if self.use_tag \ else np.zeros((bs, n_label), dtype='float32') alpha[:, -1] = 0 for i, logit in enumerate(inputs_t[:max_seq_len]): if i == 0 and not self.use_tag: alpha = logit left_length = left_length - 1 continue alpha_exp = np.expand_dims(alpha, 2) alpha_trn_sum = alpha_exp + trans_exp max_res = np.amax(alpha_trn_sum, 1), np.argmax(alpha_trn_sum, 1) historys = historys + [max_res[1]] if i >= 1 else [] alpha_nxt = max_res[0] + logit mask = (left_length > 0) alpha = mask * alpha_nxt + (1 - mask) * alpha if self.use_tag: alpha += (left_length == 1) * trans_exp[:, self.stop_idx] left_length = left_length - 1 scores, last_ids = np.amax(alpha, 1), np.argmax(alpha, 1) left_length = left_length[:, 0] last_ids_update = last_ids * (left_length >= 0) batch_path = [last_ids_update] batch_offset = np.arange(bs) * n_label for hist in reversed(historys): left_length = left_length + 1 gather_idx = batch_offset + last_ids last_ids_update = np.take(hist, gather_idx) * (left_length > 0) mask = (left_length == 0) last_ids_update = last_ids_update * (1 - mask) + last_ids * mask batch_path.insert(0, last_ids_update) last_ids = last_ids_update + (left_length < 0) * last_ids batch_path = np.stack(batch_path, 1) return scores, batch_path class TestViterbiOp(OpTest): def set_attr(self): self.dtype = "float32" if core.is_compiled_with_rocm() else "float64" self.use_tag = True self.bz, self.len, self.ntags = 4, 8, 10 def setUp(self): self.op_type = "viterbi_decode" self.set_attr() bz, length, ntags = self.bz, self.len, self.ntags self.input = np.random.randn(bz, length, ntags).astype(self.dtype) self.trans = np.random.randn(ntags, ntags).astype(self.dtype) self.length = np.random.randint(1, length + 1, [bz]).astype('int64') decoder = Decoder(self.trans, self.use_tag) scores, path = decoder(self.input, self.length) self.inputs = { 'Input': self.input, 'Transition': self.trans, 'Length': self.length } self.attrs = {'include_bos_eos_tag': self.use_tag, } self.outputs = {'Scores': scores, 'Path': path} def test_output(self): self.check_output() class TestViterbiAPI(unittest.TestCase): def set_attr(self): self.use_tag = True self.bz, self.len, self.ntags = 4, 8, 10 self.places = [fluid.CPUPlace(), fluid.CUDAPlace(0)] \ if core.is_compiled_with_cuda() else [fluid.CPUPlace()] def setUp(self): self.set_attr() bz, length, ntags = self.bz, self.len, self.ntags self.input = np.random.randn(bz, length, ntags).astype('float32') self.transitions = np.random.randn(ntags, ntags).astype('float32') self.length = np.random.randint(1, length + 1, [bz]).astype('int64') decoder = Decoder(self.transitions, self.use_tag) self.scores, self.path = decoder(self.input, self.length) def check_static_result(self, place): bz, length, ntags = self.bz, self.len, self.ntags with fluid.program_guard(fluid.Program(), fluid.Program()): Input = fluid.data( name="Input", shape=[bz, length, ntags], dtype="float32") Transition = fluid.data( name="Transition", shape=[ntags, ntags], dtype="float32") Length = fluid.data(name="Length", shape=[bz], dtype="int64") decoder = paddle.text.ViterbiDecoder(Transition, self.use_tag) score, path = decoder(Input, Length) exe = fluid.Executor(place) feed_list = { "Input": self.input, "Transition": self.transitions, "Length": self.length } fetches = exe.run(feed=feed_list, fetch_list=[score, path]) np.testing.assert_allclose(fetches[0], self.scores, rtol=1e-5) np.testing.assert_allclose(fetches[1], self.path) def test_static_net(self): for place in self.places: self.check_static_result(place)