// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/imperative/layer.h" #include "paddle/fluid/imperative/variable_wrapper.h" #include "paddle/fluid/memory/memory.h" #if defined(PADDLE_WITH_NCCL) #include "paddle/fluid/imperative/all_reduce.h" #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/fluid/operators/strided_memcpy.h" #include "paddle/fluid/platform/cuda_resource_pool.h" #endif namespace paddle { namespace imperative { #if defined(PADDLE_WITH_NCCL) template void ConcatTensorsForAllReduce( const platform::CUDADeviceContext& context, const std::vector& dense_tensors_, framework::Variable* p_dense_contents) { operators::math::ConcatFunctor concat_functor_; concat_functor_(context, dense_tensors_, 0, p_dense_contents->GetMutable()); } template void SplitTensorsForAllReduce(const platform::CUDADeviceContext& context, framework::Variable* p_dense_contents, std::vector* p_dense_tensors) { auto* in = p_dense_contents->GetMutable(); std::vector outs; std::vector shape_refer; outs.reserve(p_dense_tensors->size()); shape_refer.reserve(p_dense_tensors->size()); for (auto& tensor : *p_dense_tensors) { outs.emplace_back(&tensor); shape_refer.emplace_back(&tensor); } // Sometimes direct copies will be faster if (p_dense_tensors->size() < 10) { operators::StridedMemcpyWithAxis0(context, *in, shape_refer, &outs); } else { operators::math::SplitFunctor split_functor_; split_functor_(context, *in, shape_refer, 0, &outs); } } class Group { public: // Here, we use dense_contents_ & sparse_contents_ to // achieve the tensor fuse. When is_sparse_ is true, sparse_contents_ work, // conversely, dense_contents_ works. It is mutex relationship. framework::Variable dense_contents_; framework::Variable* sparse_contents_ = nullptr; bool is_sparse_ = false; // for concat kernel std::vector dense_tensors_; std::vector length_; int64_t all_length_{0}; // Global indices of participating variables in the group std::vector variable_indices_; // Number of params that haven't been ready. When it is 0, it means // the group is ready. size_t pending_ = -1; // external message of group framework::proto::VarType::Type dtype_; // context is used to select the stream for concat void ConcatTensors(const platform::CUDADeviceContext& context); // context is used to select the stream for split void SplitTensors(const platform::CUDADeviceContext& context); friend std::ostream& operator<<(std::ostream&, const Group&); }; struct VariableLocator { // record the index in groups_ size_t group_index; size_t inside_group_index; }; class Reducer { public: explicit Reducer( const std::vector>& vars, const std::vector>& group_indices, const std::vector& is_sparse_gradient, std::shared_ptr parallel_ctx, const std::vector& group_size_limits); virtual ~Reducer() {} void InitializeGroups(const std::vector>& group_indices); void InitializeDenseGroups(const std::vector& variable_indices_, Group* p_group); void PrepareForBackward(); void AddDistHook(VariableWrapper* var_warpper, size_t var_index); void MarkVariableReady(size_t var_index, VariableWrapper* var_warpper); void MarkGroupReady(size_t group_index); void FinalizeBackward(); void ReleaseReducer(); std::vector> RebuildGruops(); void CreateGroupEvents(int group_num); // Reducer Singleton static std::shared_ptr SetInstance( const std::vector>& vars, const std::vector>& group_indices, const std::vector& is_sparse_gradient, std::shared_ptr parallel_ctx, const std::vector& group_size_limits) { if (NULL == s_instance_) { s_instance_.reset(new paddle::imperative::Reducer( vars, group_indices, is_sparse_gradient, parallel_ctx, group_size_limits)); } return s_instance_; } static std::shared_ptr GetInstance() { PADDLE_ENFORCE_EQ( s_instance_ != NULL, true, platform::errors::InvalidArgument("Reducer is not initialized.")); return s_instance_; } private: std::vector> vars_; std::vector> group_indices_; static std::shared_ptr s_instance_; std::vector groups_; size_t next_group_ = 0; platform::Place place_; std::once_flag once_flag_; std::vector is_sparse_gradient_; std::shared_ptr parallel_ctx_; std::vector variable_locators_; // Following variables are to help sync stream std::vector> events_; std::shared_ptr comm_enent_; cudaStream_t compute_stream_; cudaStream_t comm_stream_; // Following variables are to help rebuild group bool has_rebuilt_group_{false}; std::vector> rebuild_vars_; std::vector rebuild_var_indices_; const std::vector group_size_limits_; }; std::vector> AssignGroupBySize( const std::vector>& tensors, const std::vector& is_sparse_gradient, const std::vector& group_size_limits, const std::vector& tensor_indices = {}); #endif } // namespace imperative } // namespace paddle