// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "test_suite.h" // NOLINT DEFINE_string(modeldir, "", "Directory of the inference model."); namespace paddle_infer { template T cRandom(int min, int max) { unsigned int seed = 100; return (min + static_cast(max * rand_r(&seed) / static_cast(RAND_MAX + 1))); } std::map PrepareInput(int batch_size) { // init input data int digit_length = 115; paddle::test::Record input_ids, segment_ids; int input_num = batch_size * digit_length; std::vector input_data(input_num, 1); std::vector segment_data(input_num, 0); srand((unsigned)time(NULL)); for (int x = 0; x < input_data.size(); x++) { input_data[x] = cRandom(1, 100); } input_ids.data = std::vector(input_data.begin(), input_data.end()); input_ids.shape = std::vector{batch_size, digit_length}; input_ids.type = paddle::PaddleDType::INT64; segment_ids.data = std::vector(segment_data.begin(), segment_data.end()); segment_ids.shape = std::vector{batch_size, digit_length}; segment_ids.type = paddle::PaddleDType::INT64; std::map my_input_data_map; my_input_data_map.insert({"input_ids", input_ids}); my_input_data_map.insert({"token_type_ids", segment_ids}); return my_input_data_map; } TEST(gpu_tester_ernie_text_cls, analysis_gpu_bz2_buffer) { // init input data auto my_input_data_map = PrepareInput(2); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config_no_ir.SwitchIrOptim(false); // prepare inference config from buffer std::string prog_file = FLAGS_modeldir + "/inference.pdmodel"; std::string params_file = FLAGS_modeldir + "/inference.pdiparams"; std::string prog_str = paddle::test::read_file(prog_file); std::string params_str = paddle::test::read_file(params_file); config.SetModelBuffer( prog_str.c_str(), prog_str.size(), params_str.c_str(), params_str.size()); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction( pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1); // get infer results paddle_infer::services::PredictorPool pred_pool(config, 1); SingleThreadPrediction( pred_pool.Retrive(0), &my_input_data_map, &infer_output_data); // check outputs CompareRecord(&truth_output_data, &infer_output_data); std::cout << "finish test" << std::endl; } TEST(mkldnn_tester_ernie_text_cls, multi_thread4_mkl_fp32_bz2) { int thread_num = 4; // init input data auto my_input_data_map = PrepareInput(2); // init output data std::map infer_output_data, truth_output_data; // prepare groudtruth config paddle_infer::Config config, config_no_ir; config_no_ir.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config.DisableGpu(); config_no_ir.SwitchIrOptim(false); // prepare inference config config.SetModel(FLAGS_modeldir + "/inference.pdmodel", FLAGS_modeldir + "/inference.pdiparams"); config.DisableGpu(); config.EnableMKLDNN(); config.SetMkldnnCacheCapacity(10); config.SetCpuMathLibraryNumThreads(10); // get groudtruth by disbale ir paddle_infer::services::PredictorPool pred_pool_no_ir(config_no_ir, 1); SingleThreadPrediction( pred_pool_no_ir.Retrive(0), &my_input_data_map, &truth_output_data, 1); // get infer results from multi threads std::vector threads; services::PredictorPool pred_pool(config, thread_num); for (int i = 0; i < thread_num; ++i) { threads.emplace_back(paddle::test::SingleThreadPrediction, pred_pool.Retrive(i), &my_input_data_map, &infer_output_data, 2); } // thread join & check outputs for (int i = 0; i < thread_num; ++i) { LOG(INFO) << "join tid : " << i; threads[i].join(); CompareRecord(&truth_output_data, &infer_output_data); } std::cout << "finish multi-thread test" << std::endl; } } // namespace paddle_infer int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); gflags::ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); }