/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/utils/flags.h" #include "test/cpp/inference/api/tester_helper.h" namespace paddle { namespace inference { void ErnieInputData(const int &total_batch_size, const bool enable_fp16, std::vector *inputs) { const int input_num = total_batch_size * 128 * 1; std::vector placeholder_012(input_num, 1); std::vector placeholder_3(input_num, 1); for (int i = 0; i < 4; i++) { PaddleTensor in; in.name = "placeholder_" + std::to_string(i); in.shape = {total_batch_size, 128, 1}; if (i < 3) { in.data = PaddleBuf(static_cast(placeholder_012.data()), input_num * sizeof(int64_t)); in.dtype = PaddleDType::INT64; } else { in.data = PaddleBuf(static_cast(placeholder_3.data()), input_num * sizeof(float)); in.dtype = PaddleDType::FLOAT32; if (enable_fp16) { ConvertFP32toFP16(in); } } inputs->push_back(std::move(in)); } } void Resnet50InputData(const int &total_batch_size, const bool enable_fp16, std::vector *inputs) { const int input_num = total_batch_size * 3 * 318 * 318; std::vector input(input_num, 1); PaddleTensor in; in.shape = {total_batch_size, 3, 318, 318}; in.data = PaddleBuf(static_cast(input.data()), input_num * sizeof(float)); in.dtype = PaddleDType::FLOAT32; if (enable_fp16) { ConvertFP32toFP16(in); } inputs->push_back(std::move(in)); } // performance profile TEST(Analyzer_ipu_fp16, performance_profile) { AnalysisConfig config; std::vector inputs; std::vector> outputs; int total_batch_size = FLAGS_ipu_micro_batch_size * FLAGS_ipu_replica_num; if (FLAGS_ipu_enable_pipelining) { // if device_num > 1 and pipelining is enabled, the total batch size = // micro_batch_size * device_num(batches_per_step) * replica_num total_batch_size = FLAGS_ipu_micro_batch_size * FLAGS_ipu_batches_per_step * FLAGS_ipu_replica_num; } if (FLAGS_model_name == "Resnet50") { config.SetModel(FLAGS_infer_model + "/model/model", FLAGS_infer_model + "/model/params"); Resnet50InputData(total_batch_size, FLAGS_ipu_enable_fp16, &inputs); } else if (FLAGS_model_name == "Ernie") { config.SetModel(FLAGS_infer_model + "/model/"); ErnieInputData(total_batch_size, FLAGS_ipu_enable_fp16, &inputs); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Only support Resnet50 and Ernie Currently")); } // ipu_device_num, ipu_micro_batch_size, ipu_enable_pipelining, // ipu_batches_per_step config.EnableIpu(FLAGS_ipu_device_num, FLAGS_ipu_micro_batch_size, FLAGS_ipu_enable_pipelining, FLAGS_ipu_batches_per_step); // ipu_enable_fp16, ipu_replica_num, ipu_available_memory_proportion, // ipu_enable_half_partial config.SetIpuConfig(FLAGS_ipu_enable_fp16, FLAGS_ipu_replica_num, FLAGS_ipu_available_memory_proportion, FLAGS_ipu_enable_half_partial); TestPrediction(reinterpret_cast(&config), {inputs}, &outputs, 1); } } // namespace inference } // namespace paddle