/* Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/ir/pass_tester_helper.h" #include "paddle/fluid/framework/op_desc.h" #include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/platform/enforce.h" using std::pair; using std::string; using std::unordered_map; PD_DEFINE_bool(enable_mkldnn, true, "Enable MKLDNN"); namespace paddle { namespace pass { using VarQuantScale = std::unordered_map>; static float const SCALE = 2.f; const std::vector PreGraphPasses({ "conv_activation_mkldnn_fuse_pass", "cpu_quantize_placement_pass", "cpu_quantize_pass", }); TEST(cpuQuantizePass, ConvReLU6) { paddle::framework::ProgramDesc prog; auto* block = prog.MutableBlock(0); auto* conv2d_op = block->AppendOp(); conv2d_op->SetType("conv2d"); conv2d_op->SetInput("Input", {"conv2d-X"}); conv2d_op->SetInput("Filter", {"conv2d-Y"}); conv2d_op->SetOutput("Output", {"conv2d-Out"}); const std::vector strides({1, 1}); const std::vector paddings({1, 1}); const std::vector dilations({1, 1}); const int groups = 1; conv2d_op->SetAttr("strides", strides); conv2d_op->SetAttr("paddings", paddings); conv2d_op->SetAttr("dilations", dilations); conv2d_op->SetAttr("groups", groups); auto* relu6_op = block->AppendOp(); relu6_op->SetType("relu6"); relu6_op->SetAttr("threshold", 6.f); relu6_op->SetInput("X", {"conv2d-Out"}); relu6_op->SetOutput("Out", {"relu-Out"}); auto place = phi::CPUPlace(); VarQuantScale* scales = new VarQuantScale(); phi::DenseTensor scale_input_tensor; phi::DenseTensor scale_weight_tensor; scale_input_tensor.Resize({1}); scale_weight_tensor.Resize({1}); auto* ptr_scale_input = scale_input_tensor.mutable_data(place); auto* ptr_scale_weight = scale_weight_tensor.mutable_data(place); ptr_scale_input[0] = SCALE; ptr_scale_weight[0] = SCALE; (*scales)["conv2d-X"] = std::make_pair(false, std::move(scale_input_tensor)); (*scales)["conv2d-Y"] = std::make_pair(false, std::move(scale_weight_tensor)); paddle::framework::Scope scope; std::unique_ptr graph( new paddle::framework::ir::Graph(prog)); (graph)->SetNotOwned(paddle::framework::ir::kParamScopeAttr, &scope); for (const auto& pass : PreGraphPasses) { auto pass_ = paddle::framework::ir::PassRegistry::Instance().Get(pass); if (pass == "cpu_quantize_pass") { pass_->Set("quant_var_scales", scales); } graph.reset(pass_->Apply(graph.release())); } int fused_conv2d_num = 0; for (auto* node : graph->Nodes()) { if (node->IsOp() && node->Op() && node->Op()->Type() == "fused_conv2d") { CHECK_EQ(node->Op()->GetAttrIfExists("fuse_beta"), 6) << "Attr fuse_beta must equal to 6."; fused_conv2d_num++; } } CHECK_GT(fused_conv2d_num, 0) << "Graph must contain fused_conv2d"; } } // namespace pass } // namespace paddle USE_PASS(conv_activation_mkldnn_fuse_pass); USE_PASS(cpu_quantize_placement_pass); USE_PASS(cpu_quantize_pass);