// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/tracer.h" #include #include #include #include #include "paddle/fluid/eager/api/utils/global_utils.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/imperative/amp_auto_cast.h" #include "paddle/fluid/imperative/execution_context.h" #include "paddle/fluid/imperative/layout_autotune.h" #include "paddle/fluid/imperative/op_base.h" #include "paddle/fluid/operators/ops_extra_info.h" #include "paddle/fluid/platform/denormal.h" #include "paddle/fluid/platform/device/device_wrapper.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/fluid/string/string_helper.h" #include "paddle/phi/api/lib/api_gen_utils.h" #include "paddle/phi/common/place.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/flags.h" PHI_DECLARE_bool(use_mkldnn); PHI_DECLARE_string(tracer_mkldnn_ops_on); PHI_DECLARE_string(tracer_mkldnn_ops_off); PD_DECLARE_bool(use_stride_kernel); namespace paddle { namespace imperative { thread_local std::string Tracer::python_stack_ = ""; thread_local bool Tracer::enable_program_desc_tracing_ = false; thread_local bool Tracer::has_grad_ = true; thread_local bool Tracer::use_promote_ = true; thread_local bool Tracer::use_layout_autotune_ = false; thread_local AmpLevel Tracer::amp_level_ = AmpLevel::O0; thread_local phi::DataType Tracer::amp_dtype_ = phi::DataType::FLOAT32; static std::shared_ptr g_current_tracer(nullptr); const std::shared_ptr& GetCurrentTracer() { return g_current_tracer; } void SetCurrentTracer(const std::shared_ptr& tracer) { g_current_tracer = tracer; VLOG(6) << "Set current tracer: " << g_current_tracer; } void PassStopGradient(const NameVarBaseMap& outs, bool generate_grad) { for (const auto& pair : outs) { for (const auto& var : pair.second) { // NOTE(zhiqiu): this happends when None output are passed from python // side. For example, fake_quantize_dequantize_moving_average_abs_max may // pass None OutAccum in eval mode. // It can be refined by generate several different pybind interface for // one operator with different function signature. if (var == nullptr) { VLOG(4) << pair.first << " is NULL"; continue; } VLOG(6) << "Set output: " << var->Name() << "'s OverridedStopGradient as " << generate_grad; var->InnerSetOverridedStopGradient(generate_grad); } } } void IncreaseVarbaseReferenceCountUntilCopyComplete( const std::shared_ptr& var, const platform::Place& place) { // Note(zhiqiu): Follow the logic of TensorCopy to determine the place that we // need to add callback, see tensor_utils.cc:245 auto place_ = platform::is_gpu_place(place) ? place : var->Place(); auto tracer = imperative::GetCurrentTracer(); auto gc = tracer->MutableGarbageCollectorIfNotExists(place_); // Note(zhiqiu): This is an empty callback, the only way is to "reference" // var, so it will not be destructed until the kernels launched at current // stream of given place is finished. auto callback = [var, place_]() { VLOG(4) << "Run callback of var:" << var->Name() << " at place " << place_; }; gc->DirectClearCallback(callback); } paddle::framework::GarbageCollector* Tracer::MutableGarbageCollectorIfNotExists( const platform::Place& place) { // if not exists, create a new GarbageCollector at given place if (gcs_.count(place) == 0) { std::unique_ptr gc; if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) gc = std::make_unique(place, 0); VLOG(10) << "Created GarbageCollector at " << place; #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't use CUDA device since it's not compiled with CUDA," "Please recompile or reinstall Paddle with GPU support.")); #endif } else if (platform::is_cuda_pinned_place(place)) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) gc = std::make_unique(place, 0); VLOG(10) << "Created GarbageCollector at " << place; #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't use CUDAPinned device since it's not compiled with " "CUDA," "Please recompile or reinstall Paddle with GPU support.")); #endif } else if (platform::is_xpu_place(place)) { #if defined(PADDLE_WITH_XPU) gc = std::make_unique(place, 0); VLOG(10) << "Created GarbageCollector at " << place; #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't use XPU device since it's not compiled with XPU," "Please recompile or reinstall Paddle with XPU support.")); #endif } else if (platform::is_cpu_place(place)) { gc = std::make_unique(place, 0); VLOG(10) << "Created GarbageCollector at " << place; } else if (platform::is_ipu_place(place)) { #if defined(PADDLE_WITH_IPU) gc = std::make_unique(place, 0); VLOG(10) << "Created GarbageCollector at " << place; #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't use IPU device since it's not compiled with IPU," "Please recompile or reinstall Paddle with IPU support.")); #endif } else if (platform::is_custom_place(place)) { #if defined(PADDLE_WITH_CUSTOM_DEVICE) if (framework::IsFastEagerDeletionModeEnabled()) { gc = std::make_unique( place, 0); VLOG(10) << "Created UnsafeFastGarbageCollector at " << place; } else { gc = std::make_unique( place, 0); VLOG(10) << "Created GarbageCollector at " << place; } #else PADDLE_THROW(platform::errors::PermissionDenied( "Paddle can't use CustomDevice since it's not compiled with " "CustomDevice," "Please recompile or reinstall Paddle with CustomDevice " "support.")); #endif } else { PADDLE_THROW(platform::errors::PreconditionNotMet( "Unsupported place for garbage collection")); } gcs_.emplace(place, std::move(gc)); } return gcs_.at(place).get(); } template void Tracer::TraceOp(const std::string& type, const NameVarMap& ins, const NameVarMap& outs, framework::AttributeMap attrs, const platform::Place& place, bool trace_backward, const std::map& inplace_map, paddle::framework::AttributeMap* passed_default_attrs_, bool use_default_attr_map) { TraceOpImpl(type, ins, outs, attrs, place, trace_backward, inplace_map, passed_default_attrs_, use_default_attr_map); } template void Tracer::TraceOpImpl(const std::string& type, const NameVarMap& ins, const NameVarMap& outs, framework::AttributeMap& attrs, const platform::Place& place, bool trace_backward, const std::map& inplace_map, paddle::framework::AttributeMap* passed_default_attrs_, bool use_default_attr_map) { platform::RecordEvent op_type_record_event( type, platform::TracerEventType::Operator, 1); platform::ScopedFlushDenormal flush; VLOG(4) << "Trace Op: " << type; if (FLAGS_use_mkldnn) { // if both lists are empty all ops are enabled (default for // FLAGS_use_mkldnn=1) // if ops_on list is not empty only ops from that list are enabled if (!FLAGS_tracer_mkldnn_ops_on.empty()) { auto is_on = FLAGS_tracer_mkldnn_ops_on.find(type) != std::string::npos; attrs["use_mkldnn"] = is_on; } else { // if ops_on list is empty all ops are enabled except types from off_list auto is_off = FLAGS_tracer_mkldnn_ops_off.find(type) != std::string::npos; attrs["use_mkldnn"] = !is_off; } } auto op = framework::OpRegistry::CreateOp(type, {}, {}, {}, false); const auto& op_info = op->Info(); auto* attr_checker = op_info.Checker(); if (attr_checker) { attr_checker->Check(&attrs, true, /*only_check_exist_value=*/true); } const auto& extra_attr_checkers = operators::ExtraInfoUtils::Instance().GetExtraAttrsChecker(type); for (const auto& checker : extra_attr_checkers) { checker(&attrs, true); } static paddle::framework::AttributeMap empty_attrs_map = {}; const paddle::framework::AttributeMap& default_attrs = attr_checker == nullptr ? empty_attrs_map : attr_checker->GetDefaultAttrMap(); std::unique_ptr> ins_amp = nullptr; if (amp_level_ == AmpLevel::O1) { if (amp_dtype_ == phi::DataType::FLOAT16) { VLOG(5) << "Float16 Auto Mixed Precision O1 run operator: " << type; ins_amp = std::make_unique>( AutoCastInputs(type, ins)); } else if (amp_dtype_ == phi::DataType::BFLOAT16) { VLOG(5) << "BFloat16 Auto Mixed Precision O1 run operator: " << type; ins_amp = std::make_unique>( AutoCastBF16Inputs(type, ins)); } } else if (amp_level_ == AmpLevel::O2) { if (amp_dtype_ == phi::DataType::FLOAT16) { VLOG(5) << "Float16 Auto Mixed Precision O2 run operator: " << type; ins_amp = std::make_unique>( CastPureFp16Inputs(type, ins)); } else if (amp_dtype_ == phi::DataType::BFLOAT16) { VLOG(5) << "BFloat16 Auto Mixed Precision O2 run operator: " << type; ins_amp = std::make_unique>( CastPureBf16Inputs(type, ins)); } } if (platform::is_gpu_place(place)) { const auto& new_tmp = ins_amp == nullptr ? ins : *ins_amp; const auto& tracer = imperative::GetCurrentTracer(); ins_amp = std::make_unique>( imperative::AutoTuneLayout( type, new_tmp, outs, &attrs, tracer)); } const auto& new_ins = ins_amp == nullptr ? ins : *ins_amp; try { if (platform::is_gpu_place(place)) { #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) platform::SetDeviceId(place.device); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "PaddlePaddle should compile with GPU if use CUDAPlace.")); #endif } else if (platform::is_xpu_place(place)) { #ifdef PADDLE_WITH_XPU platform::SetXPUDeviceId(place.device); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "PaddlePaddle should compile with XPU if use XPUPlace.")); #endif } else if (platform::is_custom_place(place)) { #ifdef PADDLE_WITH_CUSTOM_DEVICE phi::DeviceManager::SetDevice(place); #else PADDLE_THROW(platform::errors::PreconditionNotMet( "PaddlePaddle should compile with CustomDevice if use " "CustomPlace.")); #endif } if (!use_default_attr_map) { PADDLE_ENFORCE_NOT_NULL(passed_default_attrs_, paddle::platform::errors::PermissionDenied( "Detected default_attrs = nullptr.")); VLOG(6) << "Use passed in default attrs"; OpBase::Run(*op, new_ins, outs, attrs, (*passed_default_attrs_), place); } else { VLOG(6) << "Use Checker's default attrs"; if (passed_default_attrs_) { // TODO(jiabin): Update this without copy *passed_default_attrs_ = default_attrs; } OpBase::Run(*op, new_ins, outs, attrs, default_attrs, place); } } catch (platform::EnforceNotMet& exception) { framework::AppendErrorOpHint(type, &exception); throw std::move(exception); } catch (std::exception& ex) { PADDLE_THROW( platform::errors::Fatal("Operator %s raises an %s exception.\n" "The exception content is\n:%s.", type, platform::demangle(typeid(ex).name()), ex.what())); } catch (...) { // NOTE: this branch represents a very serious bug with // low probability of occurrence, and we can't get its // exception content here. PADDLE_THROW(platform::errors::Fatal( "Operator %s raises an unknown exception.", type)); } if (enable_program_desc_tracing_) { VLOG(5) << "Trace op " << type << " into ProgramDesc"; program_desc_tracer_->InsertOp(type, new_ins, outs, attrs); } { platform::RecordEvent node_creation_record_event( "grad_node_creation", platform::TracerEventType::OperatorInner, 1); if (ComputeRequiredGrad(new_ins, outs, trace_backward)) { PADDLE_ENFORCE_EQ( passed_default_attrs_, nullptr, paddle::platform::errors::PermissionDenied( "We expect passed_default_attrs_ is nullptr while " "use_default_attr_map is true, however we got not null " "passed_default_attrs_. Please check your usage of trace_op. ")); CreateGradOpNode( *op, new_ins, outs, attrs, default_attrs, place, inplace_map); } else { VLOG(3) << "No Grad to track for Op: " << type; } VLOG(6) << "Finish Trace Op: " << type; } } template void Tracer::TraceOp( const std::string& type, const NameVarMap& ins, const NameVarMap& outs, framework::AttributeMap attrs, const platform::Place& place, bool trace_backward, const std::map& inplace_map, paddle::framework::AttributeMap* default_attrs, bool use_default_attr_map); template void Tracer::TraceOp( const std::string& type, const NameVarMap& ins, const NameVarMap& outs, framework::AttributeMap attrs, const platform::Place& place, bool trace_backward, const std::map& inplace_map_, paddle::framework::AttributeMap* default_attrs, bool use_default_attr_map); void Tracer::TraceOp(const std::string& type, const NameVarBaseMap& ins, const NameVarBaseMap& outs, framework::AttributeMap attrs, const std::map& inplace_map) { TraceOp(type, ins, outs, std::move(attrs), expected_place_, has_grad_, inplace_map); } void Tracer::TraceOp(const std::string& type, const NameTensorMap& ins, const NameTensorMap& outs, paddle::framework::AttributeMap& attrs, const paddle::platform::Place& place, paddle::framework::AttributeMap* default_attrs, bool use_default_attr_map, const std::map& inplace_map) { VLOG(6) << "Running On Eager TraceOp with use_default_attr_map: " << use_default_attr_map; std::map need_backup_inputs2outputs; std::map> need_backup_inputs2holder; std::map need_backup_inputs2strides; if (FLAGS_use_stride_kernel) { for (auto& iter : inplace_map) { auto inputs_iter = ins.find(iter.first); for (size_t i = 0; i < inputs_iter->second.size(); i++) { auto var = inputs_iter->second[i]->MutableVar(); if (var->IsType()) { auto dense_tensor = var->GetMutable(); if (!dense_tensor->meta().is_contiguous()) { NameTensorMap* tmp_out = const_cast(&outs); auto outputs_iter = tmp_out->find(iter.second); outputs_iter->second[i] = std::make_shared( egr::Controller::Instance().GenerateUniqueName()); need_backup_inputs2outputs[dense_tensor] = outputs_iter->second[i] ->MutableVar() ->GetMutable(); need_backup_inputs2holder[dense_tensor] = dense_tensor->Holder(); need_backup_inputs2strides[dense_tensor] = dense_tensor->strides(); } } } } TraceOpImpl(type, ins, outs, attrs, place, false, {}, default_attrs, use_default_attr_map); auto dev_ctx = paddle::platform::DeviceContextPool::Instance().Get(place); for (auto& iter : need_backup_inputs2outputs) { iter.first->ResetHolder(need_backup_inputs2holder[iter.first]); iter.first->set_strides(need_backup_inputs2strides[iter.first]); paddle::experimental::TransStrideLegacy(dev_ctx, iter.second, iter.first); iter.second->ResetHolder(need_backup_inputs2holder[iter.first]); iter.second->set_strides(need_backup_inputs2strides[iter.first]); } } else { TraceOpImpl(type, ins, outs, attrs, place, false, inplace_map, default_attrs, use_default_attr_map); } } void Tracer::TraceOp(const std::string& type, const NameTensorMap& ins, const NameTensorMap& outs, paddle::framework::AttributeMap attrs) { VLOG(6) << "Running On Eager TraceOp(4 agrs): "; TraceOpImpl( type, ins, outs, attrs, expected_place_, false, {}, nullptr, true); } void Tracer::TraceOp(const std::string& type, const NameTensorMap& ins, const NameTensorMap& outs, paddle::framework::AttributeMap& attrs, const std::map& inplace_map) { VLOG(6) << "Running On Eager TraceOp(less): "; std::map need_backup_inputs2outputs; if (FLAGS_use_stride_kernel) { for (auto& iter : inplace_map) { auto inputs_iter = ins.find(iter.first); for (size_t i = 0; i < inputs_iter->second.size(); i++) { auto var = inputs_iter->second[i]->MutableVar(); if (var->IsType()) { auto dense_tensor = var->GetMutable(); if (!dense_tensor->meta().is_contiguous()) { NameTensorMap* tmp_out = const_cast(&outs); auto outputs_iter = tmp_out->find(iter.second); outputs_iter->second[i] = std::make_shared( egr::Controller::Instance().GenerateUniqueName()); need_backup_inputs2outputs[dense_tensor] = outputs_iter->second[i] ->MutableVar() ->GetMutable(); } } } } } else { TraceOpImpl(type, ins, outs, attrs, expected_place_, false, inplace_map, nullptr, true); } } void Tracer::SetExpectedPlace(platform::Place place) { expected_place_ = place; } bool Tracer::ComputeRequiredGrad(const NameVarBaseMap& ins, const NameVarBaseMap& outs, bool trace_backward) { if (!trace_backward) return false; for (const auto& name_pair : ins) { for (const auto& var_base : name_pair.second) { if (!var_base->OverridedStopGradient()) { VLOG(6) << "Find out input: " << var_base->Name() << "'s GeneratedGrad is True"; PassStopGradient(outs, var_base->OverridedStopGradient()); return true; } } } return false; } bool Tracer::ComputeRequiredGrad(const NameTensorMap& ins, const NameTensorMap& outs, bool trace_backward) { return false; } phi::KernelSignature Tracer::GetExpectedKernelSignature( const std::string& type, const NameTensorMap& ins, const NameTensorMap& outs, framework::AttributeMap attrs) const { auto op = framework::OpRegistry::CreateOp(type, {}, {}, {}, false); framework::RuntimeContext ctx({}, {}); platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(phi::CPUPlace()); const auto& op_info = op->Info(); auto* attr_checker = op_info.Checker(); if (attr_checker) { attr_checker->Check(&attrs, true, /*only_check_exist_value=*/true); } static paddle::framework::AttributeMap empty_attrs_map = {}; const paddle::framework::AttributeMap& default_attrs = attr_checker == nullptr ? empty_attrs_map : attr_checker->GetDefaultAttrMap(); auto dygraph_exe_ctx = imperative::DygraphExecutionContext( *op, framework::Scope(), *dev_ctx, ctx, ins, outs, attrs, default_attrs); auto* opbase_with_kernel = dynamic_cast(op.get()); PADDLE_ENFORCE_NE(opbase_with_kernel, nullptr, platform::errors::InvalidArgument( "This op type:`%s` is not a OperatorWithKernel, only " "OperatorWithKernel can get KernelSignature", type)); if (phi::KernelFactory::Instance().HasStructuredKernel(type)) { return phi::KernelSignature(op->Type().c_str()); } else { return phi::KernelSignature(std::move( opbase_with_kernel->GetExpectedPhiKernelArgs(dygraph_exe_ctx))); } } } // namespace imperative } // namespace paddle