/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/pten_utils.h" #include "paddle/pten/core/compat/convert_utils.h" #include "paddle/pten/core/compat/op_utils.h" #include "paddle/pten/core/kernel_factory.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/selected_rows_utils.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/string/string_helper.h" namespace paddle { namespace framework { class KernelArgsNameMakerByOpProto : public KernelArgsNameMaker { public: explicit KernelArgsNameMakerByOpProto( const framework::proto::OpProto* op_proto) : op_proto_(op_proto) { PADDLE_ENFORCE_NOT_NULL(op_proto_, platform::errors::InvalidArgument( "Op proto cannot be nullptr.")); } ~KernelArgsNameMakerByOpProto() {} const paddle::SmallVector& GetInputArgsNames() override; const paddle::SmallVector& GetOutputArgsNames() override; const paddle::SmallVector& GetAttrsArgsNames() override; KernelSignature GetKernelSignature(); private: DISABLE_COPY_AND_ASSIGN(KernelArgsNameMakerByOpProto); private: const framework::proto::OpProto* op_proto_; paddle::SmallVector input_names_; paddle::SmallVector output_names_; paddle::SmallVector attr_names_; }; OpKernelType TransPtenKernelKeyToOpKernelType( const pten::KernelKey& kernel_key) { proto::VarType::Type data_type = pten::TransToProtoVarType(kernel_key.dtype()); // no need to set current device id here platform::Place place = pten::TransToFluidPlace(kernel_key.backend(), false); DataLayout data_layout = kernel_key.layout(); LibraryType library_type = LibraryType::kPlain; if (kernel_key.backend() == pten::Backend::MKLDNN) { library_type = LibraryType::kMKLDNN; } else if (kernel_key.backend() == pten::Backend::CUDNN) { library_type = LibraryType::kCUDNN; } else { // do nothing } // TODO(chenweihang): the customized_type_value is lost return OpKernelType(data_type, place, data_layout, library_type); } pten::KernelKey TransOpKernelTypeToPtenKernelKey( const OpKernelType& kernel_type) { pten::Backend backend = pten::TransToPtenBackend(kernel_type.place_); if (kernel_type.library_type_ == LibraryType::kMKLDNN) { backend = pten::Backend::MKLDNN; } else if (kernel_type.library_type_ == LibraryType::kCUDNN) { backend = pten::Backend::CUDNN; } else { // do } paddle::experimental::DataLayout layout = kernel_type.data_layout_; paddle::experimental::DataType dtype = pten::TransToPtenDataType(kernel_type.data_type_); return pten::KernelKey(backend, layout, dtype); } pten::KernelKey FallBackToCpu(const OpKernelType& expected_kernel_key, const pten::KernelKey& kernel_key, const framework::OperatorBase& op) { #ifdef PADDLE_WITH_XPU if (platform::is_xpu_place(expected_kernel_key.place_) || paddle::platform::is_in_xpu_black_list(op.Type())) { VLOG(3) << "pten missing XPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; return pten::KernelKey(pten::Backend::CPU, kernel_key.layout(), kernel_key.dtype()); } #endif #ifdef PADDLE_WITH_ASCEND_CL if (platform::is_npu_place(expected_kernel_key.place_)) { VLOG(3) << "pten missing NPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; return pten::KernelKey(pten::Backend::CPU, kernel_key.layout(), kernel_key.dtype()); } #endif #ifdef PADDLE_WITH_MLU if (platform::is_mlu_place(expected_kernel_key.place_)) { VLOG(3) << "pten missing MLU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; return pten::KernelKey(pten::Backend::CPU, kernel_key.layout(), kernel_key.dtype()); } #endif return pten::KernelKey(); } const paddle::SmallVector& KernelArgsNameMakerByOpProto::GetInputArgsNames() { for (int i = 0; i < op_proto_->inputs_size(); ++i) { auto& in = op_proto_->inputs()[i]; auto& in_name = in.name(); if ((in.has_extra() && in.extra()) || (in.has_quant() && in.quant())) { VLOG(6) << "Parse PtenKernel input: skip extra & quant input - " << in_name; continue; } // If contains dispensable input, we should override the // GetExpectedPtenKernelArgs method self if (in.has_dispensable() && in.dispensable()) { VLOG(6) << "Parse PtenKernel input: skip dispensable input - " << in_name; continue; } VLOG(6) << "Parse PtenKernel input: " << in_name; input_names_.emplace_back(in_name); } return input_names_; } const paddle::SmallVector& KernelArgsNameMakerByOpProto::GetOutputArgsNames() { for (int i = 0; i < op_proto_->outputs_size(); ++i) { auto& out = op_proto_->outputs()[i]; auto& out_name = out.name(); // TODO(chenweihang): outputs also need skip some cases VLOG(6) << "Parse PtenKernel output: " << out_name; output_names_.emplace_back(out_name); } return output_names_; } const paddle::SmallVector& KernelArgsNameMakerByOpProto::GetAttrsArgsNames() { for (int i = 0; i < op_proto_->attrs_size(); ++i) { auto& attr = op_proto_->attrs()[i]; auto& attr_name = attr.name(); if (attr_name == "use_mkldnn" || attr_name == "op_role" || attr_name == "op_role_var" || attr_name == "op_namescope" || attr_name == "op_callstack" || attr_name == "op_device") { VLOG(6) << "Parse PtenKernel attribute: skip needless attr - " << attr_name; continue; } if ((attr.has_extra() && attr.extra()) || (attr.has_quant() && attr.quant())) { VLOG(6) << "Parse PtenKernel attribute: skip extra & quant attr - " << attr_name; continue; } VLOG(6) << "Parse PtenKernel attribute: " << attr_name; attr_names_.emplace_back(attr_name); } return attr_names_; } KernelSignature KernelArgsNameMakerByOpProto::GetKernelSignature() { return KernelSignature(op_proto_->type(), GetInputArgsNames(), GetAttrsArgsNames(), GetOutputArgsNames()); } std::once_flag kernel_sig_map_init_flag; void InitDefaultKernelSignatureMap() { std::call_once(kernel_sig_map_init_flag, [] { for (const auto& pair : paddle::framework::OpInfoMap::Instance().map()) { const auto& op_type = pair.first; const auto* op_proto = pair.second.proto_; if (pten::KernelFactory::Instance().HasCompatiblePtenKernel(op_type) && op_proto) { paddle::framework::KernelArgsNameMakerByOpProto maker(op_proto); VLOG(10) << "Register kernel signature for " << op_type; pten::DefaultKernelSignatureMap::Instance().Insert( op_type, std::move(maker.GetKernelSignature())); } } }); } static void SetAllocationForUninitializedDenseTensor( pten::DenseTensor* dense_tensor, const platform::Place& place) { int dtype_size = dense_tensor->dtype() == DataType::UNDEFINED ? 0 : experimental::SizeOf(dense_tensor->dtype()); int64_t numels = product(dense_tensor->dims()); numels = numels < 0 ? 0 : numels; auto tmp_allocation_ptr = memory::Alloc(place, numels * dtype_size); auto& deleter = tmp_allocation_ptr.get_deleter(); auto* allocation_ptr = tmp_allocation_ptr.release(); auto shared_allocation = std::shared_ptr(allocation_ptr, deleter); dense_tensor->ResetHolder(shared_allocation); } void SetAllocationForOutputTenosr(pten::TensorBase* tensor, const platform::Place& place) { if (pten::DenseTensor::classof(tensor)) { auto* dense_tensor = static_cast(tensor); if (!dense_tensor->IsInitialized() || !(dense_tensor->place() == place)) { SetAllocationForUninitializedDenseTensor(dense_tensor, place); } } else if (pten::SelectedRows::classof(tensor)) { auto* selected_rows = static_cast(tensor); if (!selected_rows->value().IsInitialized() || !(selected_rows->place() == place)) { SetAllocationForUninitializedDenseTensor(selected_rows->mutable_value(), place); } } else { PADDLE_THROW(platform::errors::Unimplemented( "Unsupported tensor type is received when setting allocation for " "output tensor.")); } } } // namespace framework } // namespace paddle