// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/roll_op.h" #include #include namespace paddle { namespace operators { using framework::Tensor; class RollOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true, platform::errors::InvalidArgument( "Input(X) of RollOp should not be null.")); PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true, platform::errors::InvalidArgument( "Output(Out) of RollOp should not be null.")); auto dims = ctx->Attrs().Get>("dims"); auto shifts = ctx->Attrs().Get>("shifts"); PADDLE_ENFORCE_EQ(dims.size(), shifts.size(), platform::errors::InvalidArgument( "Attr(dims).size() should be equl to " "Attr(shifts).size(). But received " "Attr(dims).size() = %d, Attr(shifts).size() = %d", dims.size(), shifts.size())); ctx->SetOutputDim("Out", ctx->GetInputDim("X")); auto type = ctx->GetInputsVarType("X")[0]; if (type == framework::proto::VarType::LOD_TENSOR) { ctx->ShareLoD("X", /*->*/ "Out"); } } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X"); return framework::OpKernelType(data_type, ctx.device_context()); } }; class RollGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true, platform::errors::InvalidArgument( "Input(Out@GRAD) should be not null.")); PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true, platform::errors::InvalidArgument( "Output(X@GRAD) should be not null.")); ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType( ctx, framework::GradVarName("Out")), ctx.device_context()); } }; class RollOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor) the input tensor."); AddOutput("Out", "(Tensor), the output tensor."); AddAttr>("shifts", "The number of places by which the elements " "of the tensor are shifted.") .SetDefault({}); AddAttr>( "dims", "Axis along which to roll. It must have the same size " "with shifts.") .SetDefault({}); AddComment(R"DOC( Roll the tensor along the given dimension(s). Elements that are shifted beyond the last position are re-introduced at the first position. If a dimension is not specified, the tensor will be flattened before rolling and then restored to the original shape. )DOC"); } }; template class RollGradMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr op) const override { op->SetType("roll_grad"); op->SetInput("X", this->Input("X")); op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); op->SetAttrMap(this->Attrs()); } }; DECLARE_NO_NEED_BUFFER_VARS_INFERER(RollGradNoNeedBufferVarsInference, "X"); } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(roll, ops::RollOp, ops::RollOpMaker, ops::RollGradMaker, ops::RollGradMaker); REGISTER_OPERATOR(roll_grad, ops::RollGradOp, ops::RollGradNoNeedBufferVarsInference); REGISTER_OP_CPU_KERNEL( roll, ops::RollKernel, ops::RollKernel, ops::RollKernel, ops::RollKernel); REGISTER_OP_CPU_KERNEL( roll_grad, ops::RollGradKernel, ops::RollGradKernel, ops::RollGradKernel, ops::RollGradKernel);