# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import yaml # ===================================== # String Template for h file code gen # ===================================== NAMESPACE_GARD_TEMPLATE = """namespace {namespace} {{ {input} }} // namespace {namespace}""" H_FILE_TEMPLATE = """#ifdef GET_OP_LIST #undef GET_OP_LIST {op_declare} #else // This file is generated by "paddle/fluid/ir/dialect/op_gen.py" #include #include "paddle/ir/core/builder.h" #include "paddle/ir/core/operation_utils.h" #include "paddle/ir/core/op_base.h" #include "paddle/fluid/ir/dialect/utils.h" #include "paddle/fluid/ir/interface/op_yaml_info.h" #include "paddle/fluid/ir/interface/infershape.h" #include "paddle/fluid/framework/infershape_utils.h" #include "paddle/phi/core/infermeta_utils.h" {input} #endif """ GET_OP_LIST_TEMPALTE = """{} """ OP_DECLARE_TEMPLATE = """ class {op_name} : public ir::Op<{op_name}{interfaces}{traits}> {{ public: using Op::Op; static const char *name() {{ return "{dialect_op_name}"; }} {attribute_declare} static constexpr uint32_t attributes_num = {attribute_num}; static OpInfoTuple GetOpInfo(); static void Build({build_args}); static void Verify(const std::vector &inputs, const std::vector &outputs, const ir::AttributeMap &attributes); {get_inputs_and_outputs} {exclusive_interface} }}; """ op_0_attribute_declare_str = ( "static constexpr const char **attributes_name = nullptr;" ) op_n_attribute_declare_str = ( "static const char *attributes_name[{attribute_num}];" ) OP_GET_INPUT_TEMPLATE = """ ir::OpOperand {input_name}() {{ return operation()->GetOperandByIndex({input_index}); }} """ OP_GET_OUTPUT_TEMPLATE = """ ir::OpResult {output_name}() {{ return operation()->GetResultByIndex({output_index}); }} """ # ===================================== # String Template for cc file code gen # ===================================== CC_FILE_TEMPLATE = """// This file is generated by "paddle/fluid/ir/dialect/op_gen.py" #include "{h_file}" #include "paddle/fluid/ir/dialect/pd_type.h" #include "paddle/fluid/ir/dialect/pd_attribute.h" #include "paddle/ir/core/builtin_attribute.h" #include "paddle/ir/core/builtin_type.h" #include "paddle/ir/core/builtin_op.h" #include "paddle/ir/core/ir_context.h" #include "paddle/phi/core/enforce.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/infermeta/binary.h" #include "paddle/phi/infermeta/multiary.h" #include "paddle/phi/infermeta/nullary.h" #include "paddle/phi/infermeta/unary.h" #include "paddle/phi/infermeta/ternary.h" #include "paddle/phi/infermeta/backward.h" {input} """ OP_N_ATTRIBUTE_DEFINED_TEMPLATE = """ const char *{op_name}::attributes_name[{attribute_num}] = {{ {attribute_names} }}; """ # get op info OP_INFO_TEMPLATE = """ OpInfoTuple {op_name}::GetOpInfo() {{ std::vector inputs = {{ {inputs} }}; std::vector attributes = {{ {attributes} }}; std::vector outputs = {{ {outputs} }}; paddle::dialect::OpRunTimeInfo run_time_info = OpRunTimeInfo("{infer_meta_func}", {{"{infer_meta_param}"}}, {{"{kernel_func}"}}, {{"{kernel_param}"}}); return std::make_tuple(inputs, attributes, outputs, run_time_info); }} """ CONSTRUCT_INPUT_INFO_TEMPLATE = ( """OpInputInfo("{name}", "{typename}", {optional}, {no_need_buffer})""" ) CONSTRUCT_OUTPUT_INFO_TEMPLATE = ( """OpOutputInfo("{name}", "{typename}", {optional}, {intermediate})""" ) CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE = ( """OpAttributeInfo("{name}", "{typename}", "{data_type}")""" ) # build OP_BUILD_TEMPLATE = """ void {op_name}::Build({build_args}) {{ {build_inputs} {build_attributes} {build_outputs} }} """ # verify OP_VERIFY_TEMPLATE = """ void {op_name}::Verify(const std::vector &inputs, const std::vector &outputs, const ir::AttributeMap &attributes) {{ VLOG(4) << "Verifying inputs, outputs and attributes for: {op_name}."; // Verify inputs type: PADDLE_ENFORCE_EQ(inputs.size(), {inputs_size}, phi::errors::PreconditionNotMet("The size %d of inputs must be equal to {inputs_size}.", inputs.size())); {inputs_type_check} // Verify outputs type: PADDLE_ENFORCE_EQ(outputs.size(), {outputs_size}, phi::errors::PreconditionNotMet("The size %d of outputs must be equal to {outputs_size}.", outputs.size())); {outputs_type_check} // Verify if attributes contain attribute name in attributes_name: {attributes_check} }} """ GRAD_OP_VERIFY_TEMPLATE = """ void {op_name}::Verify(const std::vector &inputs, const std::vector &outputs, const ir::AttributeMap &attributes) {{ (void)inputs; (void)outputs; (void)attributes; }} """ INPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th input.")); """ INPUT_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}].type().isa()) {{ for (size_t i = 0; i < inputs[{index}].type().dyn_cast().size(); i++) {{ PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast()[i].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th input.")); }} }} else {{ PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th input.")); }} """ INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{ PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th input.")); }} """ INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (inputs[{index}]) {{ if (inputs[{index}].type().isa()) {{ for (size_t i = 0; i < inputs[{index}].type().dyn_cast().size(); i++) {{ PADDLE_ENFORCE_EQ(inputs[{index}].type().dyn_cast()[i].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th input.")); }} }} else {{ PADDLE_ENFORCE_EQ(inputs[{index}].type().isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th input.")); }} }} """ OUTPUT_TYPE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th output.")); """ OUTPUT_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}].isa()) {{ for (size_t i = 0; i < outputs[{index}].dyn_cast().size(); i++) {{ PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast()[i].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th output.")); }} }} else {{ PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th output.")); }} """ OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{ PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th output.")); }} """ OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE = """if (outputs[{index}]) {{ if (outputs[{index}].isa()) {{ for (size_t i = 0; i < outputs[{index}].dyn_cast().size(); i++) {{ PADDLE_ENFORCE_EQ(outputs[{index}].dyn_cast()[i].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th output.")); }} }} else {{ PADDLE_ENFORCE_EQ(outputs[{index}].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type validation failed for the {index}th output.")); }} }} """ ATTRIBUTE_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right.")); """ ATTRIBUTE_VECTOR_CHECK_TEMPLATE = """PADDLE_ENFORCE_EQ(attributes.count("{attribute_name}")>0 && attributes.at("{attribute_name}").isa(), true, phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right.")); for (size_t i = 0; i < attributes.at("{attribute_name}").dyn_cast().size(); i++) {{ PADDLE_ENFORCE_EQ(attributes.at("{attribute_name}").dyn_cast()[i].isa<{standard}>(), true, phi::errors::PreconditionNotMet("Type of attribute: {attribute_name} is not right.")); }} """ OP_INFER_SHAPE_TEMPLATE = """ void {op_name}::InferShape( phi::InferMetaContext *infer_meta ) {{ auto fn = PD_INFER_META(phi::{infer_meta_func}); fn(infer_meta); }} """ def to_phi_and_fluid_op_name(op_item): # Templat: - op : phi_name (fluid_name) names = op_item.split('(') if len(names) == 1: phi_fluid_name = names[0].strip() return phi_fluid_name, phi_fluid_name else: phi_name = names[0].strip() fluid_name = names[1].split(')')[0].strip() return phi_name, fluid_name # ===================================== # Parse Op Compat From Yaml # ===================================== class OpCompatParser: def __init__(self, ops_compat_yaml_file): self.ops_compat_yaml_file = ops_compat_yaml_file with open(self.ops_compat_yaml_file, "r") as f: self.ops_compat = yaml.safe_load(f) def get_compat(self, op_name): for compat in self.ops_compat: phi_name, fluid_name = to_phi_and_fluid_op_name(compat['op']) if op_name == phi_name: return compat return None # ===================================== # Parse Op Information From Yaml # ===================================== class OpInfoParser: def __init__(self, op_yaml_item, op_compat_item): self.op_yaml_item = op_yaml_item self.op_compat_item = op_compat_item self.op_phi_name = self.parse_op_phi_name() # parse inputs self.input_name_list = self.parse_input_name_list() self.input_type_list = self.parse_input_type_list() self.input_optional_list = self.parse_input_optional_list() self.input_no_need_buffer_list = self.parse_input_no_need_buffer_list() self.cross_check( self.input_name_list, self.input_type_list, self.input_optional_list ) # parse outputs self.output_name_list = self.parse_output_name_list() self.output_type_list = self.parse_output_type_list() self.output_size_list = self.parse_output_size_list() self.output_optional_list = self.parse_output_optional_list() self.output_intermediate_list = self.parse_output_intermediate_list() self.cross_check( self.output_name_list, self.output_type_list, self.output_optional_list, ) # parse attributes self.attr_types_map = { 'IntArray': ['paddle::dialect::IntArrayAttribute', 'IntArray'], 'Scalar': ['paddle::dialect::ScalarAttribute', 'Scalar'], 'Scalar(int)': ['paddle::dialect::ScalarAttribute', 'int'], 'Scalar(int64_t)': ['paddle::dialect::ScalarAttribute', 'int64_t'], 'Scalar(float)': ['paddle::dialect::ScalarAttribute', 'float'], 'Scalar(dobule)': ['paddle::dialect::ScalarAttribute', 'dobule'], 'Scalar[]': [ 'ir::ArrayAttribute', 'std::vector', ], 'int': ['ir::Int32_tAttribute', 'int'], 'int32_t': ['ir::Int32_tAttribute', 'int32_t'], 'int64_t': ['ir::Int64_tAttribute', 'int64_t'], 'long': ['ir::LongAttribute', 'long'], 'size_t': ['ir::Size_tAttribute', 'size_t'], 'float': ['ir::FloatAttribute', 'float'], 'float[]': [ 'ir::ArrayAttribute', 'std::vector', ], 'double': ['ir::DoubleAttribute', 'double'], 'bool': ['ir::BoolAttribute', 'bool'], 'bool[]': [ 'ir::ArrayAttribute', 'std::vecot', ], 'str': ['ir::StrAttribute', 'std::string'], 'str[]': [ 'ir::ArrayAttribute', 'std::vector', ], 'Place': ['paddle::dialect::PlaceAttribute', 'Place'], 'DataLayout': [ 'paddle::dialect::DataLayoutAttribute', 'DataLayout', ], 'DataType': ['paddle::dialect::DataTypeAttribute', 'DataType'], 'int64_t[]': [ 'ir::ArrayAttribute', 'std::vector', ], 'int[]': [ 'ir::ArrayAttribute', 'std::vector', ], } self.attribute_name_list = self.parse_attribute_name_list() self.attribute_type_list = self.parse_attribute_type_list() self.attribute_build_arg_type_list = ( self.parse_attribute_build_arg_type_list() ) self.attribute_data_type_list = self.parse_attribute_data_type_list() self.attribute_default_value_list = ( self.parse_attribute_default_value_list() ) self.cross_check(self.attribute_name_list, self.attribute_type_list) # parse mutable attributes (as inputs) ( self.mutable_attribute_name_list, self.mutable_attribute_type_list, ) = self.parse_mutable_attribute() # parse infermeta && kernel self.infer_meta_map = self.parse_infer_meta_map() self.kernel_map = self.parse_kernel_map() if 'infer_meta' in self.op_yaml_item: self.infer_shape_func = self.op_yaml_item['infer_meta']["func"] else: self.infer_shape_func = None def cross_check(self, name_list, type_list, optional_list=None): assert len(name_list) == len( type_list ), "name list size != type list size." if optional_list is not None: assert len(type_list) == len( optional_list ), "type list size != optional list size." def parse_op_phi_name(self): if self.parse_op_inplace_info() is None: return [self.op_yaml_item['name']] else: if self.op_yaml_item['name'][-1] == "_": return [self.op_yaml_item['name']] else: return [ self.op_yaml_item['name'], self.op_yaml_item['name'] + "_", ] def parse_op_inplace_info(self): if 'inplace' in self.op_yaml_item: return self.op_yaml_item['inplace'] return None def parse_mutable_attribute(self): """ {'axis': 'paddle::dialect::ScalarAttribute', 'rotl': 'paddle::dialect::IntArrayAttribute'} """ mutable_attribute_name_list = [] mutable_attribute_type_list = [] # scalar if (self.op_compat_item is not None) and ( 'scalar' in self.op_compat_item ): for scalar_attr in self.op_compat_item['scalar'].keys(): if 'data_type' in self.op_compat_item['scalar'][scalar_attr]: if ( self.op_compat_item['scalar'][scalar_attr]['data_type'] == "std::string" ): # see isclose and allclose in op_compat.yaml mutable_attribute_name_list.append(scalar_attr) mutable_attribute_type_list.append( ["ir::StrAttribute", "std::string"] ) else: mutable_attribute_name_list.append(scalar_attr) mutable_attribute_type_list.append( [ "paddle::dialect::ScalarAttribute", self.op_compat_item['scalar'][scalar_attr][ 'data_type' ], ] ) # See eye in op_compat.yaml else: mutable_attribute_name_list.append(scalar_attr) mutable_attribute_type_list.append( [ "paddle::dialect::ScalarAttribute", self.attribute_data_type_list[ self.attribute_name_list.index(scalar_attr) ], ] ) # int_array if (self.op_compat_item is not None) and ( 'int_array' in self.op_compat_item ): for int_array_attr in self.op_compat_item['int_array']: mutable_attribute_name_list.append(int_array_attr) mutable_attribute_type_list.append( [ "paddle::dialect::IntArrayAttribute", self.op_compat_item['int_array'][int_array_attr][ 'data_type' ], ] ) return mutable_attribute_name_list, mutable_attribute_type_list def parse_input_name_list(self): name_list = [] for input_info in self.op_yaml_item['inputs']: name_list.append(input_info['name']) return name_list def parse_input_type_list(self): input_types_map = { 'Tensor': 'paddle::dialect::DenseTensorType', 'Tensor[]': 'ir::VectorType', } type_list = [] for input_info in self.op_yaml_item['inputs']: assert ( input_info['typename'] in input_types_map ), f"{self.op_phi_name} : Input type error: the input type only support Tensor and Tensor[], but now is {input_info['typename']}." type_list.append(input_types_map[input_info['typename']]) return type_list def parse_input_optional_list(self): optional_list = [] for input_info in self.op_yaml_item['inputs']: if input_info['optional']: optional_list.append("true") else: optional_list.append("false") return optional_list def parse_input_no_need_buffer_list(self): no_need_buffer_list = [] for input_info in self.op_yaml_item['inputs']: if input_info['no_need_buffer']: no_need_buffer_list.append("true") else: no_need_buffer_list.append("false") return no_need_buffer_list def parse_output_name_list(self): name_list = [] for output_info in self.op_yaml_item['outputs']: name_list.append(output_info['name']) return name_list def parse_output_type_list(self): output_type_map = { 'Tensor': 'paddle::dialect::DenseTensorType', 'Tensor[]': 'ir::VectorType', } type_list = [] for output_info in self.op_yaml_item['outputs']: assert ( output_info['typename'] in output_type_map ), f"{self.op_phi_name} : Output type error: the output type only support Tensor and Tensor[], but now is {output_info['typename']}." type_list.append(output_type_map[output_info['typename']]) return type_list def parse_output_size_list(self): size_list = [] for output_info in self.op_yaml_item['outputs']: if 'size' in output_info: size_list.append(output_info['size']) else: size_list.append(None) return size_list def parse_output_optional_list(self): optional_list = [] for output_info in self.op_yaml_item['outputs']: if 'optional' in output_info: if output_info['optional']: optional_list.append("true") else: optional_list.append("false") else: optional_list.append("false") return optional_list def parse_output_intermediate_list(self): intermediate_list = [] for output_info in self.op_yaml_item['outputs']: if 'intermediate' in output_info: if output_info['intermediate']: intermediate_list.append("true") else: intermediate_list.append("false") else: intermediate_list.append("false") return intermediate_list def parse_attribute_name_list(self): name_list = [] for attribute_info in self.op_yaml_item['attrs']: name_list.append(attribute_info['name']) return name_list def parse_attribute_build_arg_type_list(self): type_list = [] for attribute_info in self.op_yaml_item['attrs']: assert ( attribute_info['typename'] in self.attr_types_map ), f"{self.op_phi_name} : Attr type error." # Scalar & IntArray has data_type temp_type = self.attr_types_map[attribute_info['typename']][1] if 'Scalar' in temp_type: if 'data_type' in attribute_info: temp_type = attribute_info['data_type'] if 'IntArray' in temp_type: if 'data_type' in attribute_info: temp_type = attribute_info['data_type'] type_list.append(self.get_phi_dtype_name(temp_type)) return type_list def parse_attribute_type_list(self): type_list = [] for attribute_info in self.op_yaml_item['attrs']: assert ( attribute_info['typename'] in self.attr_types_map ), f"{self.op_phi_name} : Attr type error." type_list.append(self.attr_types_map[attribute_info['typename']][0]) return type_list def parse_attribute_data_type_list(self): data_type_list = [] for attribute_info in self.op_yaml_item['attrs']: if 'data_type' in attribute_info: data_type_list.append(attribute_info['data_type']) else: data_type_list.append("") return data_type_list def parse_attribute_default_value_list(self): default_value_list = [] for attribute_info in self.op_yaml_item['attrs']: if 'default_value' in attribute_info: default_value = attribute_info['default_value'] default_value_list.append( self.get_phi_dtype_name(default_value) ) else: default_value_list.append(None) return default_value_list def parse_infer_meta_map(self): if 'infer_meta' in self.op_yaml_item: return self.op_yaml_item['infer_meta'] else: return None def parse_kernel_map(self): if 'kernel' in self.op_yaml_item: return self.op_yaml_item['kernel'] else: return None def get_phi_dtype_name(self, name): name = name.replace('Scalar', 'phi::Scalar') name = name.replace('IntArray', 'phi::IntArray') name = name.replace('DataLayout', 'phi::DataLayout') name = name.replace('DataType', 'phi::DataType') if name.startswith( ( "Place", "CPUPlace", "GPUPlace", "GPUPinnedPlace", "XPUPlace", "IPUPlace", "CustomPlace", ) ): return "phi::" + name return name def to_pascal_case(s): words = s.split("_") if s[-1] == "_": return "".join([word.capitalize() for word in words]) + "_" else: return "".join([word.capitalize() for word in words]) + "" # ===================================== # Generate Op Definition Files # ===================================== def GenBuildInputArgsStr( op_input_name_list, op_mutable_attribute_name_list, op_non_mutable_attribute_name_list, op_non_mutable_attribute_build_arg_type_list, op_non_mutable_attribute_default_value_list, for_func_define=True, ): ''' Example: ir::Builder &builder, ir::OperationArgument &argument, ir::OpResult x_, phi::DataType dtype=phi::DataType::UNDEFINED, phi::Place place={} ''' build_args_str = "ir::Builder &builder, ir::OperationArgument &argument" # add inputs if len(op_input_name_list) > 0: for input_name in op_input_name_list: build_args_str += ", ir::OpResult " + input_name + "_" # add mutable attributes as inputs if len(op_mutable_attribute_name_list) > 0: for mutable_attr in op_mutable_attribute_name_list: build_args_str += ", ir::OpResult " + mutable_attr + "_" # add non-mutable attributes for attr_idx in range(len(op_non_mutable_attribute_name_list)): build_args_str += ( ", " + op_non_mutable_attribute_build_arg_type_list[attr_idx] + " " + op_non_mutable_attribute_name_list[attr_idx] ) if for_func_define: if ( op_non_mutable_attribute_default_value_list[attr_idx] is not None ): default_value = op_non_mutable_attribute_default_value_list[ attr_idx ] if ( op_non_mutable_attribute_build_arg_type_list[attr_idx] != "std::string" ): if default_value[0] == "'" or default_value[0] == '"': default_value = default_value[1:] if default_value[-1] == "'" or default_value[-1] == '"': default_value = default_value[0:-1] build_args_str += "=" + default_value return build_args_str def GenBuildInputs(op_input_name_list, op_mutable_attribute_name_list): BUILD_INPUT_TEMPLATE = """ std::vector argument_inputs = {{{inputs_args}}}; argument.AddOperands(argument_inputs.begin(), argument_inputs.end()); """ build_input_str = ' VLOG(4) << "Builder construction inputs";\n' input_name_list = op_input_name_list + op_mutable_attribute_name_list if len(input_name_list) > 0: inputs_args_str = "" inputs_args_str += "_, ".join(input_name_list) + "_" build_input_str += BUILD_INPUT_TEMPLATE.format( inputs_args=inputs_args_str ) return build_input_str def GenBuildAttributes( op_non_mutable_attribute_name_list, op_non_mutable_attribute_type_list ): INTARRAY_STR_TEMPLATE = """ ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::IntArray({attr})); """ SCALAR_STR_TEMPLATE = """ ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), phi::Scalar({attr})); """ STR_TEMPLATE = """ ir::Attribute attr_{attr_name} = {op_attribute_type}::get(ir::IrContext::Instance(), {attr}); """ ARRAY_ATTRIBUTE_TEMPLATE = """ std::vector vec_{attr_name}; for (size_t i = 0; i < static_cast({attr_size}); i++) {{ {create_attribute} vec_{attr_name}.push_back(attr_{attr_name}); }} ir::Attribute attr_{attr_name} = ir::ArrayAttribute::get(ir::IrContext::Instance(), vec_{attr_name}); """ attr_str = ' VLOG(4) << "Builder construction attributes";\n' for idx in range(len(op_non_mutable_attribute_name_list)): if "ir::ArrayAttribute<" in op_non_mutable_attribute_type_list[idx]: inner_attribute_type = op_non_mutable_attribute_type_list[idx][ 19:-1 ] if inner_attribute_type == "paddle::dialect::IntArrayAttribute": attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], attr_size=op_non_mutable_attribute_name_list[idx] + ".size()", create_attribute=INTARRAY_STR_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], op_attribute_type=inner_attribute_type, attr=op_non_mutable_attribute_name_list[idx] + "[i]", ), ) elif inner_attribute_type == "paddle::dialect::ScalarAttribute": attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], attr_size=op_non_mutable_attribute_name_list[idx] + ".size()", create_attribute=SCALAR_STR_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], op_attribute_type=inner_attribute_type, attr=op_non_mutable_attribute_name_list[idx] + "[i]", ), ) else: attr_str += ARRAY_ATTRIBUTE_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], attr_size=op_non_mutable_attribute_name_list[idx] + ".size()", create_attribute=STR_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], op_attribute_type=inner_attribute_type, attr=op_non_mutable_attribute_name_list[idx] + "[i]", ), ) elif ( op_non_mutable_attribute_type_list[idx] == "paddle::dialect::IntArrayAttribute" ): attr_str += INTARRAY_STR_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], op_attribute_type=op_non_mutable_attribute_type_list[idx], attr=op_non_mutable_attribute_name_list[idx], ) elif ( op_non_mutable_attribute_type_list[idx] == "paddle::dialect::ScalarAttribute" ): attr_str += SCALAR_STR_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], op_attribute_type=op_non_mutable_attribute_type_list[idx], attr=op_non_mutable_attribute_name_list[idx], ) else: attr_str += STR_TEMPLATE.format( attr_name=op_non_mutable_attribute_name_list[idx], op_attribute_type=op_non_mutable_attribute_type_list[idx], attr=op_non_mutable_attribute_name_list[idx], ) attr_str += """ argument.AddAttribute("{attr_name}", attr_{attr_name});\n""".format( attr_name=op_non_mutable_attribute_name_list[idx] ) return attr_str def GenBuildOutputs( op_input_name_list, op_input_type_list, op_mutable_attribute_name_list, op_mutable_attribute_type_list, op_output_name_list, op_output_type_list, op_output_size_list, op_infer_meta_map, ): build_output_str = ' VLOG(4) << "Builder construction outputs";\n' CREATE_INPUT_METATENSOR_TEMPLATE = """ phi::DenseTensor dense_{name}; dense_{name}.set_meta( phi::DenseTensorMeta(TransToPhiDataType({name}.dtype()), {name}.dims(), {name}.data_layout(), {name}.lod(), {name}.offset()) ); phi::MetaTensor meta_{name}(&dense_{name}); """ CREATE_INPUT_VEC_METATENSOR_TEMPLATE = """ std::vector vec_dense_{name}({name}.size(), phi::DenseTensor()); std::vector vec_meta_{name}; for (size_t i=0; i < static_cast({name}.size()); i++) {{ vec_dense_{name}[i].set_meta( phi::DenseTensorMeta(TransToPhiDataType({name}[i].dyn_cast().dtype()), {name}[i].dyn_cast().dims(), {name}[i].dyn_cast().data_layout(), {name}[i].dyn_cast().lod(), {name}[i].dyn_cast().offset()) ); vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i])); }} std::vector meta_{name}; for (size_t i=0; i < static_cast(vec_meta_{name}.size()); i++) {{ meta_{name}.push_back(&vec_meta_{name}[i]); }} """ CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE = """ std::vector {name} = {name}_.owner()->dyn_cast().value().dyn_cast().data().GetData(); (void){name};\n""" CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE = """ {dtype} {name} = {name}_.owner()->dyn_cast().value().dyn_cast().data().to<{dtype}>(); (void){name};\n""" CREATE_STRING_MUTABLE_ATTRIBUE_TEMPLATE = """ std::string {name} = {name}_.owner()->dyn_cast().value().dyn_cast().data(); (void){name};\n""" CREATE_OUTPUT_METATENSOR_TEMPLATE = """ phi::DenseTensor dense_{name}; phi::MetaTensor meta_{name}(&dense_{name}); """ CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE = """ std::vector vec_dense_{name}(({output_size}), phi::DenseTensor()); std::vector vec_meta_{name}; for (size_t i=0; i < static_cast({output_size}); i++) {{ vec_meta_{name}.push_back(phi::MetaTensor(&vec_dense_{name}[i])); }} std::vector meta_{name}; for (size_t i=0; i < static_cast(vec_meta_{name}.size()); i++) {{ meta_{name}.push_back(&vec_meta_{name}[i]); }} """ # Prepar input type for idx in range(len(op_input_name_list)): # is a vector if 'ir::VectorType' in op_input_type_list[idx]: build_output_str += " ir::VectorType {name} = {name}_.type().dyn_cast(); (void){name};\n".format( name=op_input_name_list[idx] ) # is a Tensor else: build_output_str += " paddle::dialect::DenseTensorType {name} = {name}_.type().dyn_cast(); (void){name};\n".format( name=op_input_name_list[idx] ) # Prepare mutable attributes for idx in range(len(op_mutable_attribute_name_list)): attr_dtype = op_mutable_attribute_type_list[idx] # int_array if attr_dtype[0] == "paddle::dialect::IntArrayAttribute": build_output_str += ( CREATE_INTARRAY_MUTABLE_ATTRIBUE_TEMPLATE.format( name=op_mutable_attribute_name_list[idx] ) ) # scalar elif attr_dtype[0] == "paddle::dialect::ScalarAttribute": build_output_str += CREATE_SCALAR_MUTABLE_ATTRIBUE_TEMPLATE.format( name=op_mutable_attribute_name_list[idx], dtype=attr_dtype[1] ) # string elif attr_dtype[0] == "ir::StrAttribute": build_output_str += CREATE_STRING_MUTABLE_ATTRIBUE_TEMPLATE.format( name=op_mutable_attribute_name_list[idx] ) else: assert "mutable attribtue type is not right." build_output_str += "\n" # Prepare inputs_meta_tensor & attributes for infer meta infer_meta_args = [] for idx in range(len(op_infer_meta_map['param'])): # is input if op_infer_meta_map['param'][idx] in op_input_name_list: if ( "meta_" + op_infer_meta_map['param'][idx] ) not in infer_meta_args: # is a vector if ( 'ir::VectorType' in op_input_type_list[ op_input_name_list.index( op_infer_meta_map['param'][idx] ) ] ): build_output_str += ( CREATE_INPUT_VEC_METATENSOR_TEMPLATE.format( name=op_infer_meta_map['param'][idx] ) ) # is a Tensor else: build_output_str += CREATE_INPUT_METATENSOR_TEMPLATE.format( name=op_infer_meta_map['param'][idx] ) infer_meta_args.append("meta_" + op_infer_meta_map['param'][idx]) # is attribute else: infer_meta_args.append(op_infer_meta_map['param'][idx]) # Prepare outputs_meta_tensor for infer meta for idx in range(len(op_output_name_list)): # is a vector if 'ir::VectorType' in op_output_type_list[idx]: build_output_str += CREATE_OUTPUT_VEC_METATENSOR_TEMPLATE.format( name=op_output_name_list[idx], output_size=op_output_size_list[idx], ) infer_meta_args.append(f"meta_{op_output_name_list[idx]}") # is a Tensor else: build_output_str += CREATE_OUTPUT_METATENSOR_TEMPLATE.format( name=op_output_name_list[idx] ) infer_meta_args.append(f"&meta_{op_output_name_list[idx]}") # Execute infer meta function CREATE_INFER_META_FUNC_TEMPLATE = """ phi::{func}({args}); """ build_output_str += CREATE_INFER_META_FUNC_TEMPLATE.format( func=op_infer_meta_map['func'], args=", ".join(infer_meta_args) ) # use dense_{name} or vec_dense_{name} to create Outputs type build_output_str += "\n std::vector argument_outputs;" CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE = """ ir::Type {name}_dense_tensor_type = paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(dense_{name}.dtype()), dense_{name}.dims(), dense_{name}.layout(), dense_{name}.lod(), dense_{name}.offset()); argument_outputs.push_back({name}_dense_tensor_type); """ CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE = """ std::vector {name}_types; for (size_t i=0; i < static_cast({output_size}); i++) {{ {name}_types.push_back(paddle::dialect::DenseTensorType::get(ir::IrContext::Instance(), TransToIrDataType(vec_dense_{name}[i].dtype()), vec_dense_{name}[i].dims(), vec_dense_{name}[i].layout(), vec_dense_{name}[i].lod(), vec_dense_{name}[i].offset())); }} ir::Type {name}_vector_type = ir::VectorType::get(ir::IrContext::Instance(), {name}_types); argument_outputs.push_back({name}_vector_type); """ for idx in range(len(op_output_name_list)): # is a vector if 'ir::VectorType' in op_output_type_list[idx]: build_output_str += CREATE_OUTPUT_VEC_DENSE_TENSOR_TEMPLATE.format( name=op_output_name_list[idx], output_size=op_output_size_list[idx], ) # is a Tensor else: build_output_str += CREATE_OUTPUT_DENSE_TENSOR_TEMPLATE.format( name=op_output_name_list[idx] ) build_output_str += " argument.AddTypes(argument_outputs.begin(), argument_outputs.end());\n" return build_output_str def OpGenerator( op_yaml_files, op_compat_yaml_file, namespaces, dialect_name, op_def_h_file, op_def_cc_file, ): # (1) Prepare: Delete existing old files: pd_op.h.tmp, pd_op.cc.tmp if os.path.exists(op_def_h_file): os.remove(op_def_h_file) if os.path.exists(op_def_cc_file): os.remove(op_def_cc_file) # (2) Prepare: Get all op item in all op_yaml_files op_compat_parser = OpCompatParser(op_compat_yaml_file) op_yaml_items = [] for yaml_file in op_yaml_files: with open(yaml_file, "r") as f: ops = yaml.safe_load(f) op_yaml_items = op_yaml_items + ops op_info_items = [] for op in op_yaml_items: op_info_items.append( OpInfoParser(op, op_compat_parser.get_compat(op['name'])) ) # (3) CodeGen: Traverse op_info_items and generate ops_name_list = [] # all op class name store in this list ops_declare_list = [] # all op class declare store in this list ops_defined_list = [] # all op class defined store in this list for op_info in op_info_items: # get op inputs info op_input_name_list = op_info.input_name_list op_input_type_list = op_info.input_type_list op_input_optional_list = op_info.input_optional_list op_input_no_need_buffer_list = op_info.input_no_need_buffer_list # get op outputs info op_output_name_list = op_info.output_name_list op_output_type_list = op_info.output_type_list op_output_size_list = op_info.output_size_list op_output_optional_list = op_info.output_optional_list op_output_intermediate_list = op_info.output_intermediate_list # get op mutable attribute op_mutable_attribute_name_list = op_info.mutable_attribute_name_list op_mutable_attribute_type_list = op_info.mutable_attribute_type_list # get op attribute op_attribute_name_list = op_info.attribute_name_list op_attribute_type_list = op_info.attribute_type_list op_attribute_data_type_list = op_info.attribute_data_type_list op_attribute_build_arg_type_list = op_info.attribute_build_arg_type_list op_attribute_default_value_list = op_info.attribute_default_value_list op_non_mutable_attribute_name_list = [] op_non_mutable_attribute_type_list = [] op_non_mutable_attribute_data_type_list = [] op_non_mutable_attribute_build_arg_type_list = [] op_non_mutable_attribute_default_value_list = [] for idx in range(len(op_attribute_name_list)): if ( op_attribute_name_list[idx] not in op_mutable_attribute_name_list ): op_non_mutable_attribute_name_list.append( op_attribute_name_list[idx] ) op_non_mutable_attribute_type_list.append( op_attribute_type_list[idx] ) op_non_mutable_attribute_data_type_list.append( op_attribute_data_type_list[idx] ) op_non_mutable_attribute_build_arg_type_list.append( op_attribute_build_arg_type_list[idx] ) op_non_mutable_attribute_default_value_list.append( op_attribute_default_value_list[idx] ) # others op_infer_meta_map = op_info.infer_meta_map op_kernel_map = op_info.kernel_map op_interfaces = ["OpYamlInfoInterface"] op_traits = [] exclusive_interface_str = "" if op_info.infer_shape_func: op_interfaces += ["InferShapeInterface"] exclusive_interface_str += ( " static void InferShape( phi::InferMetaContext *infer_meta );" ) # If op has inplace info, we will generate inplace op and non-inplace op. for op_name in op_info.op_phi_name: op_class_name = to_pascal_case(op_name) + "Op" op_dialect_name = dialect_name + "." + op_name # gen interface/trait str op_interfaces_str = "" if len(op_interfaces) > 0: op_interfaces_str = "," + ",".join(op_interfaces) op_traits_str = "" if len(op_traits) > 0: op_traits_str = "," + ",".join(op_traits) op_get_inputs_outputs_str = "" for idx in range(len(op_input_name_list)): op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format( input_name=op_input_name_list[idx], input_index=idx, ) for idx in range(len(op_mutable_attribute_name_list)): op_get_inputs_outputs_str += OP_GET_INPUT_TEMPLATE.format( input_name=op_mutable_attribute_name_list[idx], input_index=idx + len(op_input_name_list), ) for idx in range(len(op_output_name_list)): op_get_inputs_outputs_str += OP_GET_OUTPUT_TEMPLATE.format( output_name=op_output_name_list[idx], output_index=idx, ) # gen build str build_define_input_args_str = "" build_declare_input_args_str = "" build_func_declare_str = "" if op_infer_meta_map is not None: build_define_input_args_str = GenBuildInputArgsStr( op_input_name_list, op_mutable_attribute_name_list, op_non_mutable_attribute_name_list, op_non_mutable_attribute_build_arg_type_list, op_non_mutable_attribute_default_value_list, True, ) build_declare_input_args_str = GenBuildInputArgsStr( op_input_name_list, op_mutable_attribute_name_list, op_non_mutable_attribute_name_list, op_non_mutable_attribute_build_arg_type_list, op_non_mutable_attribute_default_value_list, False, ) build_inputs_str = GenBuildInputs( op_input_name_list, op_mutable_attribute_name_list ) build_attributes_str = GenBuildAttributes( op_non_mutable_attribute_name_list, op_non_mutable_attribute_type_list, ) build_outputs_str = GenBuildOutputs( op_input_name_list, op_input_type_list, op_mutable_attribute_name_list, op_mutable_attribute_type_list, op_output_name_list, op_output_type_list, op_output_size_list, op_infer_meta_map, ) build_func_declare_str = OP_BUILD_TEMPLATE.format( op_name=op_class_name, build_args=build_declare_input_args_str, build_inputs=build_inputs_str, build_attributes=build_attributes_str, build_outputs=build_outputs_str, ) else: build_func_declare_str = OP_BUILD_TEMPLATE.format( op_name=op_class_name, build_args=build_declare_input_args_str, build_inputs="", build_attributes="", build_outputs="", ) # gen op_declare_str/op_defined_str if len(op_non_mutable_attribute_name_list) == 0: op_declare_str = OP_DECLARE_TEMPLATE.format( op_name=op_class_name, dialect_op_name=op_dialect_name, interfaces=op_interfaces_str, traits=op_traits_str, attribute_declare=op_0_attribute_declare_str, attribute_num=0, build_args=build_define_input_args_str, get_inputs_and_outputs=op_get_inputs_outputs_str, exclusive_interface=exclusive_interface_str, ) op_defined_str = "" else: op_declare_str = OP_DECLARE_TEMPLATE.format( op_name=op_class_name, dialect_op_name=op_dialect_name, interfaces=op_interfaces_str, traits=op_traits_str, attribute_declare=op_n_attribute_declare_str.format( attribute_num=len(op_non_mutable_attribute_name_list) ), attribute_num=len(op_non_mutable_attribute_name_list), build_args=build_define_input_args_str, get_inputs_and_outputs=op_get_inputs_outputs_str, exclusive_interface=exclusive_interface_str, ) attribute_names_str = ( '"' + '", "'.join(op_non_mutable_attribute_name_list) + '"' ) op_defined_str = OP_N_ATTRIBUTE_DEFINED_TEMPLATE.format( op_name=op_class_name, attribute_num=len(op_non_mutable_attribute_name_list), attribute_names=attribute_names_str, ) # generate get op info funciton: inputs inputs_info_str = "" if len(op_input_name_list) > 0: input_info_list = [] for idx in range(len(op_input_name_list)): input_info_list.append( CONSTRUCT_INPUT_INFO_TEMPLATE.format( name=op_input_name_list[idx], typename=op_input_type_list[idx], optional=op_input_optional_list[idx], no_need_buffer=op_input_no_need_buffer_list[idx], ) ) inputs_info_str = ", ".join(input_info_list) # generate get op info funciton: outputs outputs_info_str = "" if len(op_output_name_list) > 0: output_info_list = [] for idx in range(len(op_output_name_list)): output_info_list.append( CONSTRUCT_OUTPUT_INFO_TEMPLATE.format( name=op_output_name_list[idx], typename=op_output_type_list[idx], optional=op_output_optional_list[idx], intermediate=op_output_intermediate_list[idx], ) ) outputs_info_str = ", ".join(output_info_list) # generate get op info funciton: attributes attribute_info_str = "" if len(op_attribute_name_list) > 0: attribute_info_list = [] for idx in range(len(op_attribute_name_list)): attribute_info_list.append( CONSTRUCT_ATTRIBUTE_INFO_TEMPLATE.format( name=op_attribute_name_list[idx], typename=op_attribute_type_list[idx], data_type=op_attribute_data_type_list[idx], ) ) attribute_info_str = ", ".join(attribute_info_list) # generate runtiem info infer_meta_func_str = "" infer_meta_param_str = "" if op_infer_meta_map is not None: infer_meta_func_str = op_infer_meta_map['func'] infer_meta_param_str = '", "'.join(op_infer_meta_map['param']) kernel_func_str = "" kernel_param_str = "" if op_kernel_map is not None: kernel_func_str = '", "'.join(op_kernel_map['func']) kernel_param_str = '", "'.join(op_kernel_map['param']) op_info_func_str = OP_INFO_TEMPLATE.format( op_name=op_class_name, inputs=inputs_info_str, attributes=attribute_info_str, outputs=outputs_info_str, infer_meta_func=infer_meta_func_str, infer_meta_param=infer_meta_param_str, kernel_func=kernel_func_str, kernel_param=kernel_param_str, ) # generate op verify function: inputs_type_check_str if ( len(op_input_type_list) + len(op_mutable_attribute_name_list) ) == 0: inputs_type_check_str = ( "// Inputs num is 0, not need to check inputs type." ) else: inputs_type_check_str = "" for idx in range(len(op_input_type_list)): input_type = op_input_type_list[idx] is_optional = op_input_optional_list[idx] is_vector = False if input_type.startswith("ir::VectorType<"): is_vector = True input_type = input_type[15:-1] check_str = "" if is_optional == "true": if is_vector: check_str = ( INPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format( index=idx, standard=input_type ) ) else: check_str = INPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format( index=idx, standard=input_type ) else: if is_vector: check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format( index=idx, standard=input_type ) else: check_str = INPUT_TYPE_CHECK_TEMPLATE.format( index=idx, standard=input_type ) inputs_type_check_str += check_str for idx in range(len(op_mutable_attribute_name_list)): mutable_attribute_type = op_mutable_attribute_type_list[idx][0] check_str = "" if mutable_attribute_type == "paddle::dialect::ScalarAttribute": check_str = INPUT_TYPE_CHECK_TEMPLATE.format( index=idx + len(op_input_type_list), standard="paddle::dialect::DenseTensorType", ) else: check_str = INPUT_VECTORTYPE_CHECK_TEMPLATE.format( index=idx + len(op_input_type_list), standard="paddle::dialect::DenseTensorType", ) inputs_type_check_str += check_str # generate op verify function: outputs_type_check_str if len(op_output_type_list) == 0: outputs_type_check_str = ( "// Outputs num is 0, not need to check outputs type." ) else: outputs_type_check_str = "" for idx in range(len(op_output_type_list)): output_type = op_output_type_list[idx] is_optional = op_output_optional_list[idx] is_vector = False if output_type.startswith("ir::VectorType<"): is_vector = True output_type = output_type[15:-1] check_str = "" if is_optional == "true": if is_vector: check_str = ( OUTPUT_OPTIONAL_VECTORTYPE_CHECK_TEMPLATE.format( index=idx, standard=output_type ) ) else: check_str = OUTPUT_OPTIONAL_TYPE_CHECK_TEMPLATE.format( index=idx, standard=output_type ) else: if is_vector: check_str = OUTPUT_VECTORTYPE_CHECK_TEMPLATE.format( index=idx, standard=output_type ) else: check_str = OUTPUT_TYPE_CHECK_TEMPLATE.format( index=idx, standard=output_type ) outputs_type_check_str += check_str # generate op verify function: attributes_check_str if len(op_non_mutable_attribute_name_list) == 0: attributes_check_str = ( "// Attributes num is 0, not need to check attributes type." ) else: attributes_check_str = "" for idx in range(len(op_non_mutable_attribute_name_list)): attribute_name = op_non_mutable_attribute_name_list[idx] attribute_type = op_non_mutable_attribute_type_list[idx] if attribute_type.startswith("ir::ArrayAttribute<"): attribute_type = attribute_type[19:-1] attributes_check_str += ( ATTRIBUTE_VECTOR_CHECK_TEMPLATE.format( attribute_name=attribute_name, standard=attribute_type, ) ) else: attributes_check_str += ATTRIBUTE_CHECK_TEMPLATE.format( attribute_name=attribute_name, standard=attribute_type ) # generate op verify function if "GradOp" in op_class_name or "Grad_Op" in op_class_name: op_verify_str = GRAD_OP_VERIFY_TEMPLATE.format( op_name=op_class_name, ) else: op_verify_str = OP_VERIFY_TEMPLATE.format( op_name=op_class_name, inputs_size=len(op_input_type_list) + len(op_mutable_attribute_type_list), outputs_size=len(op_output_type_list), inputs_type_check=inputs_type_check_str, outputs_type_check=outputs_type_check_str, attributes_check=attributes_check_str, ) op_infer_shape_str = "" if op_info.infer_shape_func: op_infer_shape_str = OP_INFER_SHAPE_TEMPLATE.format( op_name=op_class_name, infer_meta_func=op_info.infer_shape_func, ) ops_name_list.append(op_class_name) ops_declare_list.append(op_declare_str) ops_defined_list.append(op_defined_str) ops_defined_list.append(op_info_func_str) ops_defined_list.append(build_func_declare_str) ops_defined_list.append(op_verify_str) ops_defined_list.append(op_infer_shape_str) # (4) Generate head file str op_namespaces_prev = "" for name in namespaces: op_namespaces_prev += name + "::" ops_name_with_namespace_list = [] for name in ops_name_list: ops_name_with_namespace_list.append(op_namespaces_prev + name) op_list_str = GET_OP_LIST_TEMPALTE.format( ", ".join(ops_name_with_namespace_list) ) # Add GET_OP_LIST head_file_str = "" head_file_str += "".join(ops_declare_list) # Add op class for name in reversed(namespaces): head_file_str = NAMESPACE_GARD_TEMPLATE.format( namespace=name, input=head_file_str ) # Add namespaces head_file_str = H_FILE_TEMPLATE.format( op_declare=op_list_str, input=head_file_str ) # Add head # (5) Generate source file str source_file_str = "".join(ops_defined_list) # Add op define for name in reversed(namespaces): source_file_str = NAMESPACE_GARD_TEMPLATE.format( namespace=name, input=source_file_str ) # Add namespaces source_file_str = CC_FILE_TEMPLATE.format( h_file=op_def_h_file[:-4], input=source_file_str ) # Add head # (5) Generate pd_op.h.tmp, pd_op.cc.tmp with open(op_def_h_file, 'a') as f: f.write(head_file_str) with open(op_def_cc_file, 'a') as f: f.write(source_file_str) # ===================================== # Script parameter parsing # ===================================== def ParseArguments(): parser = argparse.ArgumentParser( description='Generate Dialect OP Definition Files By Yaml' ) parser.add_argument('--op_yaml_files', type=str) parser.add_argument('--op_compat_yaml_file', type=str) parser.add_argument('--namespaces', type=str) parser.add_argument('--dialect_name', type=str) parser.add_argument('--op_def_h_file', type=str) parser.add_argument('--op_def_cc_file', type=str) return parser.parse_args() # ===================================== # Main # ===================================== if __name__ == "__main__": # parse arguments args = ParseArguments() op_yaml_files = args.op_yaml_files.split(",") op_compat_yaml_file = args.op_compat_yaml_file namespaces = [] if args.namespaces is not None: namespaces = args.namespaces.split(",") dialect_name = args.dialect_name op_def_h_file = args.op_def_h_file op_def_cc_file = args.op_def_cc_file # auto code generate OpGenerator( op_yaml_files, op_compat_yaml_file, namespaces, dialect_name, op_def_h_file, op_def_cc_file, )