// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #if !defined(_WIN32) #include #endif #include #include // NOLINT #include #include #include #include #include #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/port.h" #include "paddle/fluid/string/printf.h" namespace paddle { namespace inference { // Timer for timer class Timer { public: std::chrono::high_resolution_clock::time_point start; std::chrono::high_resolution_clock::time_point startu; void tic() { start = std::chrono::high_resolution_clock::now(); } double toc() { startu = std::chrono::high_resolution_clock::now(); std::chrono::duration time_span = std::chrono::duration_cast>(startu - start); double used_time_ms = static_cast(time_span.count()) * 1000.0; return used_time_ms; } }; static int GetUniqueId() { static int id = 0; return id++; } static void split(const std::string &str, char sep, std::vector *pieces) { pieces->clear(); if (str.empty()) { return; } size_t pos = 0; size_t next = str.find(sep, pos); while (next != std::string::npos) { pieces->push_back(str.substr(pos, next - pos)); pos = next + 1; next = str.find(sep, pos); } if (!str.substr(pos).empty()) { pieces->push_back(str.substr(pos)); } } static void split_to_float(const std::string &str, char sep, std::vector *fs) { std::vector pieces; split(str, sep, &pieces); std::transform(pieces.begin(), pieces.end(), std::back_inserter(*fs), [](const std::string &v) { return std::stof(v); }); } static void split_to_int64(const std::string &str, char sep, std::vector *is) { std::vector pieces; split(str, sep, &pieces); std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is), [](const std::string &v) { return std::stoi(v); }); } static void split_to_int(const std::string &str, char sep, std::vector *is) { std::vector pieces; split(str, sep, &pieces); std::transform(pieces.begin(), pieces.end(), std::back_inserter(*is), [](const std::string &v) { return std::stoi(v); }); } template std::string to_string(const std::vector &vec) { std::stringstream ss; for (const auto &c : vec) { ss << c << " "; } return ss.str(); } template <> std::string to_string>( const std::vector> &vec); template <> std::string to_string>>( const std::vector>> &vec); template int VecReduceToInt(const std::vector &v) { return std::accumulate(v.begin(), v.end(), 1, [](T a, T b) { return a * b; }); } template static void TensorAssignData(PaddleTensor *tensor, const std::vector> &data) { // Assign buffer int num_elems = VecReduceToInt(tensor->shape); tensor->data.Resize(sizeof(T) * num_elems); int c = 0; for (const auto &f : data) { for (T v : f) { static_cast(tensor->data.data())[c++] = v; } } } template static void TensorAssignData(PaddleTensor *tensor, const std::vector> &data, const std::vector &lod) { int size = lod[lod.size() - 1]; tensor->shape.assign({size, 1}); tensor->lod.assign({lod}); TensorAssignData(tensor, data); } template static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor, const std::vector> &data) { auto *ptr = tensor->mutable_data(PaddlePlace::kCPU); int c = 0; for (const auto &f : data) { for (T v : f) { ptr[c++] = v; } } } template static void ZeroCopyTensorAssignData(ZeroCopyTensor *tensor, const PaddleBuf &data) { auto *ptr = tensor->mutable_data(PaddlePlace::kCPU); for (size_t i = 0; i < data.length() / sizeof(T); i++) { ptr[i] = *(reinterpret_cast(data.data()) + i); } } static bool CompareTensor(const PaddleTensor &a, const PaddleTensor &b) { if (a.dtype != b.dtype) { LOG(ERROR) << "dtype not match"; return false; } if (a.lod.size() != b.lod.size()) { LOG(ERROR) << "lod not match"; return false; } for (size_t i = 0; i < a.lod.size(); i++) { if (a.lod[i].size() != b.lod[i].size()) { LOG(ERROR) << "lod not match"; return false; } for (size_t j = 0; j < a.lod[i].size(); j++) { if (a.lod[i][j] != b.lod[i][j]) { LOG(ERROR) << "lod not match"; return false; } } } if (a.shape.size() != b.shape.size()) { LOG(INFO) << "shape not match"; return false; } for (size_t i = 0; i < a.shape.size(); i++) { if (a.shape[i] != b.shape[i]) { LOG(ERROR) << "shape not match"; return false; } } auto *adata = static_cast(a.data.data()); auto *bdata = static_cast(b.data.data()); for (int i = 0; i < VecReduceToInt(a.shape); i++) { if (adata[i] != bdata[i]) { LOG(ERROR) << "data not match"; return false; } } return true; } static std::string DescribeTensor(const PaddleTensor &tensor, int max_num_of_data = 15) { std::stringstream os; os << "Tensor [" << tensor.name << "]\n"; os << " - type: "; switch (tensor.dtype) { case PaddleDType::FLOAT32: os << "float32"; break; case PaddleDType::INT64: os << "int64"; break; case PaddleDType::INT32: os << "int32"; break; default: os << "unset"; } os << '\n'; os << " - shape: " << to_string(tensor.shape) << '\n'; os << " - lod: "; for (auto &l : tensor.lod) { os << to_string(l) << "; "; } os << "\n"; os << " - memory length: " << tensor.data.length(); os << "\n"; os << " - data: "; int dim = VecReduceToInt(tensor.shape); float *pdata = static_cast(tensor.data.data()); for (int i = 0; i < dim; i++) { os << pdata[i] << " "; } os << '\n'; return os.str(); } static std::string DescribeZeroCopyTensor(const ZeroCopyTensor &tensor) { std::stringstream os; os << "Tensor [" << tensor.name() << "]\n"; os << " - shape: " << to_string(tensor.shape()) << '\n'; os << " - lod: "; for (auto &l : tensor.lod()) { os << to_string(l) << "; "; } os << "\n"; PaddlePlace place; int size; const auto *data = tensor.data(&place, &size); os << " - numel: " << size; os << "\n"; os << " - data: "; for (int i = 0; i < size; i++) { os << data[i] << " "; } return os.str(); } static void PrintTime(int batch_size, int repeat, int num_threads, int tid, double batch_latency, int epoch = 1) { PADDLE_ENFORCE(batch_size > 0, "Non-positive batch size."); double sample_latency = batch_latency / batch_size; LOG(INFO) << "====== threads: " << num_threads << ", thread id: " << tid << " ======"; LOG(INFO) << "====== batch_size: " << batch_size << ", iterations: " << epoch << ", repetitions: " << repeat << " ======"; LOG(INFO) << "====== batch latency: " << batch_latency << "ms, number of samples: " << batch_size * epoch << ", sample latency: " << sample_latency << "ms, fps: " << 1000.f / sample_latency << " ======"; } static bool IsFileExists(const std::string &path) { std::ifstream file(path); bool exists = file.is_open(); file.close(); return exists; } } // namespace inference } // namespace paddle