# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys from PIL import Image import paddle from paddle.io import Dataset from paddle.utils import try_import __all__ = [] def has_valid_extension(filename, extensions): """Checks if a file is a vilid extension. Args: filename (str): path to a file extensions (list[str]|tuple[str]): extensions to consider Returns: bool: True if the filename ends with one of given extensions """ assert isinstance(extensions, (list, tuple)), ("`extensions` must be list or tuple.") extensions = tuple([x.lower() for x in extensions]) return filename.lower().endswith(extensions) def make_dataset(dir, class_to_idx, extensions, is_valid_file=None): images = [] dir = os.path.expanduser(dir) if extensions is not None: def is_valid_file(x): return has_valid_extension(x, extensions) for target in sorted(class_to_idx.keys()): d = os.path.join(dir, target) if not os.path.isdir(d): continue for root, _, fnames in sorted(os.walk(d, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if is_valid_file(path): item = (path, class_to_idx[target]) images.append(item) return images class DatasetFolder(Dataset): """A generic data loader where the samples are arranged in this way: root/class_a/1.ext root/class_a/2.ext root/class_a/3.ext root/class_b/123.ext root/class_b/456.ext root/class_b/789.ext Args: root (string): Root directory path. loader (callable|optional): A function to load a sample given its path. extensions (list[str]|tuple[str]|optional): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable|optional): A function/transform that takes in a sample and returns a transformed version. is_valid_file (callable|optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: classes (list): List of the class names. class_to_idx (dict): Dict with items (class_name, class_index). samples (list): List of (sample path, class_index) tuples targets (list): The class_index value for each image in the dataset Example: .. code-block:: python import os import cv2 import tempfile import shutil import numpy as np from paddle.vision.datasets import DatasetFolder def make_fake_dir(): data_dir = tempfile.mkdtemp() for i in range(2): sub_dir = os.path.join(data_dir, 'class_' + str(i)) if not os.path.exists(sub_dir): os.makedirs(sub_dir) for j in range(2): fake_img = (np.random.random((32, 32, 3)) * 255).astype('uint8') cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img) return data_dir temp_dir = make_fake_dir() # temp_dir is root dir # temp_dir/class_1/img1_1.jpg # temp_dir/class_2/img2_1.jpg data_folder = DatasetFolder(temp_dir) for items in data_folder: break shutil.rmtree(temp_dir) """ def __init__(self, root, loader=None, extensions=None, transform=None, is_valid_file=None): self.root = root self.transform = transform if extensions is None: extensions = IMG_EXTENSIONS classes, class_to_idx = self._find_classes(self.root) samples = make_dataset(self.root, class_to_idx, extensions, is_valid_file) if len(samples) == 0: raise (RuntimeError( "Found 0 directories in subfolders of: " + self.root + "\n" "Supported extensions are: " + ",".join(extensions))) self.loader = default_loader if loader is None else loader self.extensions = extensions self.classes = classes self.class_to_idx = class_to_idx self.samples = samples self.targets = [s[1] for s in samples] self.dtype = paddle.get_default_dtype() def _find_classes(self, dir): """ Finds the class folders in a dataset. Args: dir (string): Root directory path. Returns: tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary. """ if sys.version_info >= (3, 5): # Faster and available in Python 3.5 and above classes = [d.name for d in os.scandir(dir) if d.is_dir()] else: classes = [ d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d)) ] classes.sort() class_to_idx = {classes[i]: i for i in range(len(classes))} return classes, class_to_idx def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path, target = self.samples[index] sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) return sample, target def __len__(self): return len(self.samples) IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp') def pil_loader(path): with open(path, 'rb') as f: img = Image.open(f) return img.convert('RGB') def cv2_loader(path): cv2 = try_import('cv2') return cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB) def default_loader(path): from paddle.vision import get_image_backend if get_image_backend() == 'cv2': return cv2_loader(path) else: return pil_loader(path) class ImageFolder(Dataset): """A generic data loader where the samples are arranged in this way: root/1.ext root/2.ext root/sub_dir/3.ext Args: root (string): Root directory path. loader (callable, optional): A function to load a sample given its path. extensions (list[str]|tuple[str], optional): A list of allowed extensions. both extensions and is_valid_file should not be passed. transform (callable, optional): A function/transform that takes in a sample and returns a transformed version. is_valid_file (callable, optional): A function that takes path of a file and check if the file is a valid file (used to check of corrupt files) both extensions and is_valid_file should not be passed. Attributes: samples (list): List of sample path Example: .. code-block:: python import os import cv2 import tempfile import shutil import numpy as np from paddle.vision.datasets import ImageFolder def make_fake_dir(): data_dir = tempfile.mkdtemp() for i in range(2): sub_dir = os.path.join(data_dir, 'class_' + str(i)) if not os.path.exists(sub_dir): os.makedirs(sub_dir) for j in range(2): fake_img = (np.random.random((32, 32, 3)) * 255).astype('uint8') cv2.imwrite(os.path.join(sub_dir, str(j) + '.jpg'), fake_img) return data_dir temp_dir = make_fake_dir() data_folder = ImageFolder(temp_dir) for items in data_folder: break shutil.rmtree(temp_dir) """ def __init__(self, root, loader=None, extensions=None, transform=None, is_valid_file=None): self.root = root if extensions is None: extensions = IMG_EXTENSIONS samples = [] path = os.path.expanduser(root) if extensions is not None: def is_valid_file(x): return has_valid_extension(x, extensions) for root, _, fnames in sorted(os.walk(path, followlinks=True)): for fname in sorted(fnames): f = os.path.join(root, fname) if is_valid_file(f): samples.append(f) if len(samples) == 0: raise (RuntimeError( "Found 0 files in subfolders of: " + self.root + "\n" "Supported extensions are: " + ",".join(extensions))) self.loader = default_loader if loader is None else loader self.extensions = extensions self.samples = samples self.transform = transform def __getitem__(self, index): """ Args: index (int): Index Returns: sample of specific index. """ path = self.samples[index] sample = self.loader(path) if self.transform is not None: sample = self.transform(sample) return [sample] def __len__(self): return len(self.samples)