# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid def cal_kthvalue(x, k, axis, keepdim=False): if axis < 0: axis = len(x.shape) + axis indices = np.argsort(x, axis=axis) value = np.sort(x, axis=axis) indices = indices.take(indices=k - 1, axis=axis) value = value.take(indices=k - 1, axis=axis) if keepdim: indices = np.expand_dims(indices, axis) value = np.expand_dims(value, axis) return value, indices class TestKthvalueOp(OpTest): def init_args(self): self.k = 5 self.axis = -1 def setUp(self): self.op_type = "kthvalue" self.python_api = paddle.kthvalue self.dtype = np.float64 self.input_data = np.random.random((2, 1, 2, 4, 10)) self.init_args() self.inputs = {'X': self.input_data} self.attrs = {'k': self.k, 'axis': self.axis} output, indices = cal_kthvalue(self.input_data, k=self.k, axis=self.axis) self.outputs = {'Out': output, 'Indices': indices} def test_check_output(self): paddle.enable_static() self.check_output(check_eager=True) def test_check_grad(self): paddle.enable_static() self.check_grad(set(['X']), 'Out', check_eager=True) class TestKthvalueOpWithKeepdim(OpTest): def init_args(self): self.k = 2 self.axis = 1 def setUp(self): self.init_args() self.op_type = "kthvalue" self.python_api = paddle.kthvalue self.dtype = np.float64 self.input_data = np.random.random((1, 3, 2, 4, 10)) self.inputs = {'X': self.input_data} self.attrs = {'k': self.k, 'axis': self.axis, 'keepdim': True} output, indices = cal_kthvalue(self.input_data, k=self.k, axis=self.axis, keepdim=True) self.outputs = {'Out': output, 'Indices': indices} def test_check_output(self): paddle.enable_static() self.check_output(check_eager=True) def test_check_grad(self): paddle.enable_static() self.check_grad(set(['X']), 'Out', check_eager=True) class TestKthvalueOpKernels(unittest.TestCase): def setUp(self): self.axises = [2, -1] def test_kthvalue_op(self): paddle.disable_static() def test_cpu_kernel(): shape = (2, 128, 10) k = 2 paddle.set_device('cpu') inputs = np.random.random(shape) tensor = paddle.to_tensor(inputs) for axis in self.axises: value_expect, indice_expect = cal_kthvalue(inputs, k, axis) v, inds = paddle.kthvalue(tensor, k, axis) np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05) np.testing.assert_allclose(inds.numpy(), indice_expect, rtol=1e-05) def test_gpu_kernel(): shape = (2, 30, 250) k = 244 paddle.set_device('gpu') inputs = np.random.random(shape) tensor = paddle.to_tensor(inputs) for axis in self.axises: value_expect, indice_expect = cal_kthvalue(inputs, k, axis) v, inds = paddle.kthvalue(tensor, k, axis) np.testing.assert_allclose(v.numpy(), value_expect, rtol=1e-05) np.testing.assert_allclose(inds.numpy(), indice_expect, rtol=1e-05) test_cpu_kernel() if fluid.core.is_compiled_with_cuda(): test_gpu_kernel() class TestKthvalueOpWithNaN(unittest.TestCase): def setUp(self): paddle.disable_static() self.x = paddle.uniform([2, 200, 10], dtype='float32') def test_errors(self): def test_nan_in_cpu_kernel(): paddle.set_device('cpu') nan_position = 100 self.x[0, nan_position, 2] = float('nan') v, inds = self.x.kthvalue(k=200, axis=1) self.assertTrue(np.isnan(v[0, 2].numpy()[0])) self.assertEqual(inds[0, 2].numpy()[0], nan_position) def test_nan_in_gpu_kernel(): paddle.set_device('gpu') nan_position = 100 self.x[0, nan_position, 2] = float('nan') v, inds = self.x.kthvalue(k=200, axis=1) self.assertTrue(np.isnan(v[0, 2].numpy()[0])) self.assertEqual(inds[0, 2].numpy()[0], nan_position) test_nan_in_cpu_kernel() if fluid.core.is_compiled_with_cuda(): test_nan_in_gpu_kernel() class TestKthvalueOpErrors(unittest.TestCase): def setUp(self): self.x = paddle.uniform([2, 10, 20, 25], dtype='float32') def test_errors(self): paddle.disable_static() def test_k_lowrange_error(): self.x.kthvalue(k=0, axis=2) self.assertRaises(ValueError, test_k_lowrange_error) def test_k_uprange_error(): self.x.kthvalue(k=500, axis=2) self.assertRaises(ValueError, test_k_uprange_error) def test_dim_range_error(): self.x.kthvalue(k=10, axis=5) self.assertRaises(ValueError, test_dim_range_error) class TestModeOpInStatic(unittest.TestCase): def setUp(self): np.random.seed(666) self.input_data = np.random.random((2, 20, 1, 2, 80)).astype(np.float64) self.k = 10 def test_run_static(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): input_tensor = paddle.static.data(name="x", shape=[2, 20, 1, 2, 80], dtype="float64") result = paddle.kthvalue(input_tensor, self.k, axis=1) expect_value = cal_kthvalue(self.input_data, self.k, axis=1)[0] exe = paddle.static.Executor(paddle.CPUPlace()) paddle_result = exe.run(feed={"x": self.input_data}, fetch_list=[result])[0] np.testing.assert_allclose(paddle_result, expect_value, rtol=1e-05) if __name__ == '__main__': unittest.main()