# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import collections import itertools import six import math import sys import warnings from functools import partial, reduce import numpy as np import paddle import paddle.fluid as fluid from paddle import framework from paddle.nn import initializer as I from paddle.nn import Layer, LayerList from paddle.fluid.layers import utils from paddle.fluid.layer_helper import LayerHelper from paddle.fluid.data_feeder import convert_dtype from paddle.fluid.param_attr import ParamAttr from paddle import _C_ops __all__ = ['resnet_basic_block', 'ResNetBasicBlock'] def resnet_basic_block(x, filter1, scale1, bias1, mean1, var1, filter2, scale2, bias2, mean2, var2, filter3, scale3, bias3, mean3, var3, stride1, stride2, stride3, padding1, padding2, padding3, dilation1, dilation2, dilation3, groups, momentum, eps, data_format, has_shortcut, use_global_stats=None, training=False, trainable_statistics=False, find_conv_max=True): if fluid.framework.in_dygraph_mode(): attrs = ('stride1', stride1, 'stride2', stride2, 'stride3', stride3, 'padding1', padding1, 'padding2', padding2, 'padding3', padding3, 'dilation1', dilation1, 'dilation2', dilation2, 'dilation3', dilation3, 'group', groups, 'momentum', momentum, 'epsilon', eps, 'data_format', data_format, 'has_shortcut', has_shortcut, 'use_global_stats', use_global_stats, "trainable_statistics", trainable_statistics, 'is_test', not training, 'act_type', "relu", 'find_conv_input_max', find_conv_max) out, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _ = \ getattr(_C_ops, "resnet_basic_block")(x, filter1, scale1, bias1, mean1, var1, filter2, scale2, bias2, mean2, var2, \ filter3, scale3, bias3, mean3, var3, mean1, var1, mean2, var2, mean3, var3, *attrs) return out helper = LayerHelper('resnet_basic_block', **locals()) bn_param_dtype = fluid.core.VarDesc.VarType.FP32 max_dtype = fluid.core.VarDesc.VarType.FP32 out = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) conv1 = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) saved_mean1 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) saved_invstd1 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) running_mean1 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if mean1 is None else mean1 running_var1 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if var1 is None else var1 conv2 = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) conv2_input = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) saved_mean2 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) saved_invstd2 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) running_mean2 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if mean2 is None else mean2 running_var2 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if var2 is None else var2 conv3 = helper.create_variable_for_type_inference(dtype=x.dtype, stop_gradient=True) saved_mean3 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) saved_invstd3 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) running_mean3 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if mean3 is None else mean3 running_var3 = helper.create_variable_for_type_inference( dtype=bn_param_dtype, stop_gradient=True) if var3 is None else var3 conv1_input_max = helper.create_variable_for_type_inference( dtype=max_dtype, stop_gradient=True) conv1_filter_max = helper.create_variable_for_type_inference( dtype=max_dtype, stop_gradient=True) conv2_input_max = helper.create_variable_for_type_inference( dtype=max_dtype, stop_gradient=True) conv2_filter_max = helper.create_variable_for_type_inference( dtype=max_dtype, stop_gradient=True) conv3_input_max = helper.create_variable_for_type_inference( dtype=max_dtype, stop_gradient=True) conv3_filter_max = helper.create_variable_for_type_inference( dtype=max_dtype, stop_gradient=True) inputs = { 'X': x, 'Filter1': filter1, 'Scale1': scale1, 'Bias1': bias1, 'Mean1': mean1, 'Var1': var1, 'Filter2': filter2, 'Scale2': scale2, 'Bias2': bias2, 'Mean2': mean2, 'Var2': var2, 'Filter3': filter3, 'Scale3': scale3, 'Bias3': bias3, 'Mean3': mean3, 'Var3': var3, } attrs = { 'stride1': stride1, 'stride2': stride2, 'stride3': stride3, 'padding1': padding1, 'padding2': padding2, 'padding3': padding3, 'dilation1': dilation1, 'dilation2': dilation2, 'dilation3': dilation3, 'group': groups, 'momentum': momentum, 'epsilon': eps, 'data_format': data_format, 'has_shortcut': has_shortcut, 'use_global_stats': use_global_stats, "trainable_statistics": trainable_statistics, 'is_test': not training, 'act_type': "relu", 'find_conv_input_max': find_conv_max } outputs = { 'Y': out, 'Conv1': conv1, 'SavedMean1': saved_mean1, 'SavedInvstd1': saved_invstd1, 'Mean1Out': running_mean1, 'Var1Out': running_var1, 'Conv2': conv2, 'SavedMean2': saved_mean2, 'SavedInvstd2': saved_invstd2, 'Mean2Out': running_mean2, 'Var2Out': running_var2, 'Conv2Input': conv2_input, 'Conv3': conv3, 'SavedMean3': saved_mean3, 'SavedInvstd3': saved_invstd3, 'Mean3Out': running_mean3, 'Var3Out': running_var3, 'MaxInput1': conv1_input_max, 'MaxFilter1': conv1_filter_max, 'MaxInput2': conv2_input_max, 'MaxFilter2': conv2_filter_max, 'MaxInput3': conv3_input_max, 'MaxFilter3': conv3_filter_max, } helper.append_op(type='resnet_basic_block', inputs=inputs, outputs=outputs, attrs=attrs) return out class ResNetBasicBlock(Layer): """ ResNetBasicBlock is designed for optimize the performence of the basic unit of ssd resnet block. The fusion op architecture like this: has_shortcut = True: else: X X / / | | | | CONV1 | CONV1 | | | | | BN1 | BN1 | | | | | RELU1 | RELU1 | | | | | CONV2 CONV3 CONV2 | | | | | BN2 BN3 BN2 | \ / \ / ADD ADD | | RELU RELU | | Y Y """ def __init__(self, num_channels1, num_filter1, filter1_size, num_channels2, num_filter2, filter2_size, num_channels3, num_filter3, filter3_size, stride1=1, stride2=1, stride3=1, act='relu', momentum=0.9, eps=1e-5, data_format='NCHW', has_shortcut=False, use_global_stats=False, is_test=False, filter1_attr=None, scale1_attr=None, bias1_attr=None, moving_mean1_name=None, moving_var1_name=None, filter2_attr=None, scale2_attr=None, bias2_attr=None, moving_mean2_name=None, moving_var2_name=None, filter3_attr=None, scale3_attr=None, bias3_attr=None, moving_mean3_name=None, moving_var3_name=None, padding1=0, padding2=0, padding3=0, dilation1=1, dilation2=1, dilation3=1, trainable_statistics=False, find_conv_max=True): super(ResNetBasicBlock, self).__init__() self._stride1 = stride1 self._stride2 = stride2 self._kernel1_size = utils.convert_to_list(filter1_size, 2, 'filter1_size') self._kernel2_size = utils.convert_to_list(filter2_size, 2, 'filter2_size') self._dilation1 = dilation1 self._dilation2 = dilation2 self._padding1 = padding1 self._padding2 = padding2 self._groups = 1 self._momentum = momentum self._eps = eps self._data_format = data_format self._act = act self._has_shortcut = has_shortcut self._use_global_stats = use_global_stats self._is_test = is_test self._trainable_statistics = trainable_statistics self._find_conv_max = find_conv_max if has_shortcut: self._kernel3_size = utils.convert_to_list(filter3_size, 2, 'filter3_size') self._padding3 = padding3 self._stride3 = stride3 self._dilation3 = dilation3 else: self._kernel3_size = None self._padding3 = 1 self._stride3 = 1 self._dilation3 = 1 # check format valid_format = {'NCHW'} if data_format not in valid_format: raise ValueError( "conv_format must be one of {}, but got conv_format={}".format( valid_format, data_format)) def _get_default_param_initializer(channels, kernel_size): filter_elem_num = np.prod(kernel_size) * channels std = (2.0 / filter_elem_num)**0.5 return I.Normal(0.0, std) # init filter bn_param_dtype = fluid.core.VarDesc.VarType.FP32 bn1_param_shape = [1, 1, num_filter1] bn2_param_shape = [1, 1, num_filter2] filter1_shape = [num_filter1, num_channels1, filter1_size, filter1_size] filter2_shape = [num_filter2, num_channels2, filter2_size, filter2_size] self.filter_1 = self.create_parameter( shape=filter1_shape, attr=filter1_attr, default_initializer=_get_default_param_initializer( num_channels1, self._kernel1_size)) self.scale_1 = self.create_parameter( shape=bn1_param_shape, attr=scale1_attr, dtype=bn_param_dtype, default_initializer=I.Constant(1.0)) self.bias_1 = self.create_parameter(shape=bn1_param_shape, attr=bias1_attr, dtype=bn_param_dtype, is_bias=True) self.mean_1 = self.create_parameter(attr=ParamAttr( name=moving_mean1_name, initializer=I.Constant(0.0), trainable=False), shape=bn1_param_shape, dtype=bn_param_dtype) self.mean_1.stop_gradient = True self.var_1 = self.create_parameter( attr=ParamAttr(name=moving_var1_name, initializer=I.Constant(1.0), trainable=False), shape=bn1_param_shape, dtype=bn_param_dtype) self.var_1.stop_gradient = True self.filter_2 = self.create_parameter( shape=filter2_shape, attr=filter2_attr, default_initializer=_get_default_param_initializer( num_channels2, self._kernel2_size)) self.scale_2 = self.create_parameter( shape=bn2_param_shape, attr=scale2_attr, dtype=bn_param_dtype, default_initializer=I.Constant(1.0)) self.bias_2 = self.create_parameter(shape=bn2_param_shape, attr=bias2_attr, dtype=bn_param_dtype, is_bias=True) self.mean_2 = self.create_parameter(attr=ParamAttr( name=moving_mean2_name, initializer=I.Constant(0.0), trainable=False), shape=bn2_param_shape, dtype=bn_param_dtype) self.mean_2.stop_gradient = True self.var_2 = self.create_parameter( attr=ParamAttr(name=moving_var2_name, initializer=I.Constant(1.0), trainable=False), shape=bn2_param_shape, dtype=bn_param_dtype) self.var_2.stop_gradient = True if has_shortcut: bn3_param_shape = [1, 1, num_filter3] filter3_shape = [ num_filter3, num_channels3, filter3_size, filter3_size ] self.filter_3 = self.create_parameter( shape=filter3_shape, attr=filter3_attr, default_initializer=_get_default_param_initializer( num_channels3, self._kernel3_size)) self.scale_3 = self.create_parameter( shape=bn3_param_shape, attr=scale3_attr, dtype=bn_param_dtype, default_initializer=I.Constant(1.0)) self.bias_3 = self.create_parameter(shape=bn3_param_shape, attr=bias3_attr, dtype=bn_param_dtype, is_bias=True) self.mean_3 = self.create_parameter(attr=ParamAttr( name=moving_mean3_name, initializer=I.Constant(0.0), trainable=False), shape=bn3_param_shape, dtype=bn_param_dtype) self.mean_3.stop_gradient = True self.var_3 = self.create_parameter(attr=ParamAttr( name=moving_var3_name, initializer=I.Constant(1.0), trainable=False), shape=bn3_param_shape, dtype=bn_param_dtype) self.var_3.stop_gradient = True else: self.filter_3 = None self.scale_3 = None self.bias_3 = None self.mean_3 = None self.var_3 = None def forward(self, x): out = resnet_basic_block( x, self.filter_1, self.scale_1, self.bias_1, self.mean_1, self.var_1, self.filter_2, self.scale_2, self.bias_2, self.mean_2, self.var_2, self.filter_3, self.scale_3, self.bias_3, self.mean_3, self.var_3, self._stride1, self._stride2, self._stride3, self._padding1, self._padding2, self._padding3, self._dilation1, self._dilation2, self._dilation3, self._groups, self._momentum, self._eps, self._data_format, self._has_shortcut, use_global_stats=self._use_global_stats, training=self.training, trainable_statistics=self._trainable_statistics, find_conv_max=self._find_conv_max) return out