// Copyright (c) 2021 CINN Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/cinn/frontend/net_builder.h" #include #include #include #include #include #include "paddle/cinn/common/target.h" #include "paddle/cinn/frontend/optimize.h" #include "paddle/cinn/frontend/syntax.h" #include "paddle/cinn/hlir/framework/graph.h" #include "paddle/cinn/hlir/framework/graph_compiler.h" #include "paddle/cinn/hlir/framework/graph_compiler_util.h" #include "paddle/cinn/hlir/framework/tensor.h" #include "paddle/cinn/hlir/op/use_ops.h" #include "paddle/cinn/utils/data_util.h" #ifdef CINN_WITH_CUDA #include #endif namespace cinn { namespace frontend { using hlir::framework::OpRegistry; namespace { Program CreateAddProgram() { constexpr int M = 32; constexpr int N = 24; NetBuilder builder("net_builder"); auto a = builder.CreateInput(Float(32), {M, N}, "A"); auto b = builder.CreateInput(Float(32), {M, N}, "B"); auto c = builder.Add(a, b); auto d = builder.Add(a, c); auto program = builder.Build(); return program; } template > std::ostream& operator<<(std::ostream& os, const std::vector& vec) { os << "{ "; for (auto e : vec) { os << e << " "; } os << "}\n"; return os; } } // namespace TEST(net_build, basic) { LOG(INFO) << "The size of registered operators: " << OpRegistry::Global()->ListAllNames().size(); LOG(INFO) << "Registered operators:\n" << OpRegistry::Global()->ListAllNames(); auto program = CreateAddProgram(); // output program for (int i = 0; i < program.size(); i++) { LOG(INFO) << "instruction: " << program[i]; } } TEST(net_build, TestTransValidVarName) { std::string a_val_id = "A"; std::string b_val_id = "B___"; frontend::NetBuilder builder("net_builder"); auto a = builder.CreateInput(Float(32), {1, 64, 112, 112}, "@A"); auto b = builder.CreateInput(Float(32), {64}, "B/"); EXPECT_EQ(a.id(), a_val_id); EXPECT_EQ(b.id(), b_val_id); } TEST(net_build, program_execute_multi_elementwise_add) { auto program = CreateAddProgram(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); LOG(INFO) << "graph:\n" << graph->Visualize(); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var("A"); scope->Var("B"); auto A = scope->GetTensor("A"); auto B = scope->GetTensor("B"); SetRandData(A, target); SetRandData(B, target); runtime_program->Execute(); } #ifdef CINN_WITH_CUDA TEST(net_build, program_execute_fc) { constexpr int B = 10; // batch size constexpr int M = 32; constexpr int K = 18; constexpr int N = 24; NetBuilder builder("net_builder"); auto a = builder.CreateInput(Float(32), {B * M, K}, "A"); auto w = builder.CreateInput(Float(32), {K, N}, "W"); // weight auto b = builder.CreateInput(Float(32), {N}, "B"); // bias auto mul_out = builder.Matmul(a, w); auto add_out = builder.Add(mul_out, b); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); LOG(INFO) << "graph:\n" << graph->Visualize(); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(a.id())); scope->Var(std::string(w.id())); scope->Var(std::string(b.id())); scope->Var(std::string(mul_out->id)); auto a_ten = scope->GetTensor(std::string(a.id())); auto w_ten = scope->GetTensor(std::string(w.id())); auto b_ten = scope->GetTensor(std::string(b.id())); auto fake_out_ten = scope->GetTensor(std::string(mul_out->id)); auto add_out_ten = scope->GetTensor(std::string(add_out->id)); SetRandData(a_ten, target); SetRandData(w_ten, target); SetRandData(b_ten, target); runtime_program->Execute(); } #endif #ifdef CINN_WITH_CUDA TEST(net_build, program_execute_multi_elementwise_add_bf16) { constexpr int M = 32; constexpr int N = 24; NetBuilder builder("net_builder"); auto a = builder.CreateInput(cinn::common::BFloat16(), {M, N}, "A"); auto b = builder.CreateInput(cinn::common::BFloat16(), {M, N}, "B"); auto c = builder.Add(a, b); auto d = builder.Add(a, c); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); LOG(INFO) << "graph:\n" << graph->Visualize(); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var("A"); scope->Var("B"); auto A = scope->GetTensor("A"); auto B = scope->GetTensor("B"); SetRandData(A, target); SetRandData(B, target); runtime_program->Execute(); } TEST(net_build, program_execute_fc_bf16) { constexpr int B = 10; // batch size constexpr int M = 32; constexpr int K = 18; constexpr int N = 24; NetBuilder builder("net_builder"); auto a = builder.CreateInput(cinn::common::BFloat16(), {B * M, K}, "A"); auto w = builder.CreateInput(cinn::common::BFloat16(), {K, N}, "W"); // weight auto b = builder.CreateInput(cinn::common::BFloat16(), {N}, "B"); // bias auto mul_out = builder.Matmul(a, w); auto add_out = builder.Add(mul_out, b); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); LOG(INFO) << "graph:\n" << graph->Visualize(); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(a.id())); scope->Var(std::string(w.id())); scope->Var(std::string(b.id())); scope->Var(std::string(mul_out->id)); auto a_ten = scope->GetTensor(std::string(a.id())); auto w_ten = scope->GetTensor(std::string(w.id())); auto b_ten = scope->GetTensor(std::string(b.id())); auto fake_out_ten = scope->GetTensor(std::string(mul_out->id)); auto add_out_ten = scope->GetTensor(std::string(add_out->id)); SetRandData(a_ten, target); SetRandData(w_ten, target); SetRandData(b_ten, target); runtime_program->Execute(); } #endif TEST(net_build, program_execute_pool2d) { const int B = 16; const int C = 64; const int H = 112; const int W = 112; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "Img"); std::string pooling_type = "max"; std::vector ksize{3, 3}; std::vector strides{2, 2}; std::vector paddings{1, 1, 1, 1}; bool ceil_mode = false; bool exclusive = true; bool global_pooling = false; std::string data_format = "NCHW"; bool adaptive = false; std::string padding_algorithm = "EXPLICIT"; Variable pool_out = builder.Pool2d(input, pooling_type, ksize, strides, paddings, ceil_mode, exclusive, global_pooling, data_format, adaptive, padding_algorithm); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(pool_out->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); runtime_program->Execute(); } TEST(net_build, program_execute_reverse) { const int B = 16; const int C = 3; const int H = 224; const int W = 224; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "Img"); Variable reverse_out = builder.Reverse(input, {2, 3}); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); LOG(INFO) << "graph:\n" << graph->Visualize(); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(reverse_out->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); runtime_program->Execute(); } TEST(net_build, program_execute_gather) { const int B = 4; const int H_IN1 = 18; const int H_IN2 = 14; NetBuilder builder("net_builder"); Placeholder input1 = builder.CreateInput(Float(32), {B, H_IN1}, "In1"); Placeholder input2 = builder.CreateInput(Int(32), {H_IN2}, "In2"); Variable output = builder.Gather(input1, input2, 1); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input1.id())); scope->Var(std::string(input2.id())); scope->Var(std::string(output->id)); auto input1_tensor = scope->GetTensor(std::string(input1.id())); SetRandData(input1_tensor, target); std::vector input1_data = GetTensorData(input1_tensor, target); auto input2_tensor = scope->GetTensor(std::string(input2.id())); SetRandInt(input2_tensor, target, -1, 0, H_IN1); std::vector input2_data = GetTensorData(input2_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_tensor->type(), Float(32)); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H_IN2); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int h = 0; h < H_IN2; ++h) { std::string line; int index = h + H_IN2 * b; float in_data = input1_data[input2_data[h] + H_IN1 * b]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); VLOG(6) << line; } } } TEST(net_build, program_execute_gather_nd) { const int B = 4; const int H_IN1 = 11; const int H_IN2 = 14; NetBuilder builder("net_builder"); Placeholder input1 = builder.CreateInput(Float(32), {B, H_IN1}, "In1"); Placeholder input2 = builder.CreateInput(Int(32), {B, H_IN2, 1}, "In2"); Variable output = builder.GatherNd(input1, input2); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input1.id())); scope->Var(std::string(input2.id())); scope->Var(std::string(output->id)); auto input1_tensor = scope->GetTensor(std::string(input1.id())); SetRandData(input1_tensor, target); std::vector input1_data = GetTensorData(input1_tensor, target); auto input2_tensor = scope->GetTensor(std::string(input2.id())); SetRandInt(input2_tensor, target, -1, 0, B); std::vector input2_data = GetTensorData(input2_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_tensor->type(), Float(32)); EXPECT_EQ(output_shape.size(), 3UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H_IN2); EXPECT_EQ(output_shape[2], H_IN1); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int h = 0; h < H_IN2; ++h) { std::string line; for (int c = 0; c < H_IN1; ++c) { float in_data = input1_data[input2_data[b * H_IN2 + h] * H_IN1 + c]; int out_index = c + h * H_IN1 + H_IN1 * H_IN2 * b; float out_data = output_data[out_index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); } VLOG(6) << line; } } } TEST(net_build, program_execute_cast) { const int B = 4; const int H = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Int(32), {B, H}, "In"); Variable output = builder.Cast(input, "float"); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandInt(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_tensor->type(), Float(32)); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int h = 0; h < H; ++h) { std::string line; int index = h + H * b; float in_data = static_cast(input_data[index]); float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); VLOG(6) << line; } } } TEST(net_build, program_execute_squeeze_case0) { const int B = 4; const int C = 1; const int H = 7; const int W = 1; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "In"); Variable output = builder.Squeeze(input, {1}); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 3UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); EXPECT_EQ(output_shape[2], W); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int c = 0; c < C; ++c) { VLOG(6) << "b = " << b << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + C * b)); float in_data = input_data[index]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); } VLOG(6) << line; } } } } TEST(net_build, program_execute_squeeze_case1) { const int B = 4; const int C = 1; const int H = 7; const int W = 1; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "In"); Variable output = builder.Squeeze(input, {-3}); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 3UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); EXPECT_EQ(output_shape[2], W); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int c = 0; c < C; ++c) { VLOG(6) << "b = " << b << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + C * b)); float in_data = input_data[index]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); } VLOG(6) << line; } } } } TEST(net_build, program_execute_squeeze_case2) { const int B = 4; const int C = 1; const int H = 7; const int W = 1; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "In"); Variable output = builder.Squeeze(input, {1, 3}); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int c = 0; c < C; ++c) { VLOG(6) << "b = " << b << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + C * b)); float in_data = input_data[index]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); } VLOG(6) << line; } } } } TEST(net_build, program_execute_squeeze_case3) { const int B = 4; const int C = 1; const int H = 7; const int W = 1; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "In"); Variable output = builder.Squeeze(input, {1, -1}); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int c = 0; c < C; ++c) { VLOG(6) << "b = " << b << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + C * b)); float in_data = input_data[index]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); } VLOG(6) << line; } } } } TEST(net_build, program_execute_squeeze_case4) { const int B = 4; const int C = 1; const int H = 7; const int W = 1; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, C, H, W}, "In"); Variable output = builder.Squeeze(input, {}); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int b = 0; b < B; ++b) { for (int c = 0; c < C; ++c) { VLOG(6) << "b = " << b << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + C * b)); float in_data = input_data[index]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(in_data, out_data); } VLOG(6) << line; } } } } TEST(net_build, program_execute_argsort) { const int B = 4; const int H = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, H}, "In"); Variable output = builder.ArgSort(input, 0, true).at(0); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_tensor->type(), Int(32)); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int h = 0; h < H; ++h) { std::vector sorted_data; std::vector out_sorted_data(H); for (int b = 0; b < B; ++b) { int index = h + H * b; sorted_data.push_back(input_data[index]); out_sorted_data[b] = input_data[h + H * output_data[index]]; } std::sort(sorted_data.begin(), sorted_data.begin() + B); for (int b = 0; b < B; ++b) { std::string line; int index = h + H * b; float true_data = sorted_data[b]; float out_data = out_sorted_data[b]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(true_data, out_data); VLOG(6) << line; } } } TEST(net_build, program_execute_sort) { const int B = 4; const int H = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {B, H}, "In"); Variable output = builder.Sort(input, 0, true); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_tensor->type(), Float(32)); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], B); EXPECT_EQ(output_shape[1], H); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int h = 0; h < H; ++h) { std::vector sorted_data; for (int b = 0; b < B; ++b) { int index = h + H * b; sorted_data.push_back(input_data[index]); } std::sort(sorted_data.begin(), sorted_data.begin() + B); for (int b = 0; b < B; ++b) { std::string line; int index = h + H * b; float true_data = sorted_data[b]; float out_data = output_data[index]; line += (std::to_string(out_data) + ", "); EXPECT_EQ(true_data, out_data); VLOG(6) << line; } } } TEST(net_build, program_execute_arange_float) { const float start = 1.5F; const float stop = 31.5F; const float step = 2.0F; const std::string dtype = "float32"; NetBuilder builder("net_builder"); Variable out = builder.Arange(start, stop, step, dtype); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(out->id)); runtime_program->Execute(); auto out_tensor = scope->GetTensor(std::string(out->id)); const std::vector& out_tensor_shape = out_tensor->shape().data(); EXPECT_EQ(out_tensor->type(), Float(32)); EXPECT_EQ(out_tensor_shape.size(), 1UL); int num_elem = static_cast(std::ceil((stop - start) / step)); EXPECT_EQ(out_tensor_shape[0], num_elem); std::vector out_data = GetTensorData(out_tensor, target); for (int i = 0; i < out_tensor_shape[0]; ++i) { EXPECT_NEAR(out_data[i], start + step * i, 1e-5); VLOG(6) << out_data[i]; } } TEST(net_build, program_execute_arange_int) { const float start = 1.5F; const float stop = 31.5F; const float step = 1.6F; const std::string dtype = "int32"; NetBuilder builder("net_builder"); Variable out = builder.Arange(start, stop, step, dtype); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(out->id)); runtime_program->Execute(); auto out_tensor = scope->GetTensor(std::string(out->id)); const std::vector& out_tensor_shape = out_tensor->shape().data(); EXPECT_EQ(out_tensor->type(), Int(32)); EXPECT_EQ(out_tensor_shape.size(), 1UL); int num_elem = static_cast(std::ceil((stop - start) / step)); EXPECT_EQ(out_tensor_shape[0], num_elem); std::vector out_data = GetTensorData(out_tensor, target); for (int i = 0; i < out_tensor_shape[0]; ++i) { EXPECT_EQ(out_data[i], static_cast(start + step * i)); VLOG(6) << out_data[i]; } } TEST(net_build, program_argmax_case1) { const int N = 4; const int IN_C = 3; const int OUT_C = 1; const int H = 7; const int W = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {N, IN_C, H, W}, "In"); Variable output = builder.Argmax(input, 1, true); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); VLOG(6) << "Visualize input_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); line += (std::to_string(input_data[index]) + ", "); } VLOG(6) << line; } } } runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 4UL); EXPECT_EQ(output_shape[0], N); EXPECT_EQ(output_shape[1], OUT_C); EXPECT_EQ(output_shape[2], H); EXPECT_EQ(output_shape[3], W); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); int out_index = w + W * (h + H * n); float in_data = input_data[index]; int out_data = output_data[out_index]; EXPECT_LE(0, out_data); EXPECT_LT(out_data, IN_C); int max_index = w + W * (h + H * (out_data + IN_C * n)); float max_value = input_data[max_index]; line += (std::to_string(out_data) + ", "); EXPECT_LE(in_data, max_value); } VLOG(6) << line; } } } } TEST(net_build, program_argmax_case2) { const int N = 4; const int IN_C = 3; const int H = 7; const int W = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {N, IN_C, H, W}, "In"); Variable output = builder.Argmax(input, 1, false); auto program = builder.Build(); Target target = common::DefaultHostTarget(); std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); float* input_data = input_tensor->mutable_data(target); VLOG(6) << "Visualize input_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); line += (std::to_string(input_data[index]) + ", "); } VLOG(6) << line; } } } runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 3UL); EXPECT_EQ(output_shape[0], N); EXPECT_EQ(output_shape[1], H); EXPECT_EQ(output_shape[2], W); int* output_data = output_tensor->mutable_data(target); VLOG(6) << "Visualize output_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); int out_index = w + W * (h + H * n); float in_data = input_data[index]; int out_data = output_data[out_index]; EXPECT_LE(0, out_data); EXPECT_LT(out_data, IN_C); int max_index = w + W * (h + H * (out_data + IN_C * n)); float max_value = input_data[max_index]; line += (std::to_string(out_data) + ", "); EXPECT_LE(in_data, max_value); } VLOG(6) << line; } } } } TEST(net_build, program_argmin_case1) { const int N = 4; const int IN_C = 3; const int OUT_C = 1; const int H = 7; const int W = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {N, IN_C, H, W}, "In"); Variable output = builder.Argmin(input, 1, true); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); VLOG(6) << "Visualize input_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); line += (std::to_string(input_data[index]) + ", "); } VLOG(6) << line; } } } runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 4UL); EXPECT_EQ(output_shape[0], N); EXPECT_EQ(output_shape[1], OUT_C); EXPECT_EQ(output_shape[2], H); EXPECT_EQ(output_shape[3], W); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); int out_index = w + W * (h + H * n); float in_data = input_data[index]; int out_data = output_data[out_index]; EXPECT_LE(0, out_data); EXPECT_LT(out_data, IN_C); int max_index = w + W * (h + H * (out_data + IN_C * n)); float max_value = input_data[max_index]; line += (std::to_string(out_data) + ", "); EXPECT_GE(in_data, max_value); } VLOG(6) << line; } } } } TEST(net_build, program_argmin_case2) { const int N = 4; const int IN_C = 3; const int H = 7; const int W = 7; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {N, IN_C, H, W}, "In"); Variable output = builder.Argmin(input, 1, false); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); VLOG(6) << "Visualize input_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); line += (std::to_string(input_data[index]) + ", "); } VLOG(6) << line; } } } runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); EXPECT_EQ(output_shape.size(), 3UL); EXPECT_EQ(output_shape[0], N); EXPECT_EQ(output_shape[1], H); EXPECT_EQ(output_shape[2], W); std::vector output_data = GetTensorData(output_tensor, target); VLOG(6) << "Visualize output_data"; for (int n = 0; n < N; ++n) { for (int c = 0; c < IN_C; ++c) { VLOG(6) << "n = " << n << ", c = " << c; for (int h = 0; h < H; ++h) { std::string line; for (int w = 0; w < W; ++w) { int index = w + W * (h + H * (c + IN_C * n)); int out_index = w + W * (h + H * n); float in_data = input_data[index]; int out_data = output_data[out_index]; EXPECT_LE(0, out_data); EXPECT_LT(out_data, IN_C); int max_index = w + W * (h + H * (out_data + IN_C * n)); float max_value = input_data[max_index]; line += (std::to_string(out_data) + ", "); EXPECT_GE(in_data, max_value); } VLOG(6) << line; } } } } TEST(net_build, program_execute_repeat_axis_0) { const int M = 4; const int N = 4; const int repeats = 3; const int axis = 0; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {M, N}, "In"); Variable output = builder.Repeat(input, repeats, axis); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); const int new_M = M * repeats; const int new_N = N; EXPECT_EQ(output_tensor->type(), Float(32)); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], new_M); EXPECT_EQ(output_shape[1], new_N); std::vector output_data = GetTensorData(output_tensor, target); for (int m = 0; m < new_M; ++m) { for (int n = 0; n < new_N; ++n) { int in_index = n + N * static_cast(std::floor(static_cast(m) / repeats)); int out_index = n + new_N * m; float in_data = input_data[in_index]; float out_data = output_data[out_index]; EXPECT_EQ(in_data, out_data); } } } TEST(net_build, program_execute_repeat_axis_1) { const int M = 4; const int N = 4; const int repeats = 3; const int axis = 1; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Float(32), {M, N}, "In"); Variable output = builder.Repeat(input, repeats, axis); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); SetRandData(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); const int new_M = M; const int new_N = N * repeats; EXPECT_EQ(output_tensor->type(), Float(32)); EXPECT_EQ(output_shape.size(), 2UL); EXPECT_EQ(output_shape[0], new_M); EXPECT_EQ(output_shape[1], new_N); std::vector output_data = GetTensorData(output_tensor, target); for (int m = 0; m < new_M; ++m) { for (int n = 0; n < new_N; ++n) { int in_index = N * m + static_cast(std::floor(static_cast(n) / repeats)); int out_index = n + new_N * m; float in_data = input_data[in_index]; float out_data = output_data[out_index]; EXPECT_EQ(in_data, out_data); } } } TEST(net_build, program_execute_one_hot) { const int M = 4; const int N = 4; const int on_value = 1; const int off_value = 0; const int depth = 11; const int axis = 0; // [-1 , M] const std::string dtype = "int32"; NetBuilder builder("net_builder"); Placeholder input = builder.CreateInput(Int(32), {M, N}, "In"); Placeholder on_value_input = builder.CreateInput(Int(32), {1}, "OnValue"); Placeholder off_value_input = builder.CreateInput(Int(32), {1}, "OffValue"); Variable output = builder.OneHot( input, on_value_input, off_value_input, depth, axis, dtype); auto program = builder.Build(); #ifdef CINN_WITH_CUDA Target target = common::DefaultNVGPUTarget(); #else Target target = common::DefaultHostTarget(); #endif std::unordered_set fetch_ids; auto graph = Optimize(&program, fetch_ids, target); auto scope = BuildScope(target, graph); hlir::framework::CompilationContext context(graph, scope, target); hlir::framework::GraphCompiler gc(context); auto runtime_program = gc.Build(); scope->Var(std::string(input.id())); scope->Var(std::string(on_value_input.id())); scope->Var(std::string(off_value_input.id())); scope->Var(std::string(output->id)); auto input_tensor = scope->GetTensor(std::string(input.id())); const std::vector& intput_shape = input_tensor->shape().data(); SetRandInt(input_tensor, target); std::vector input_data = GetTensorData(input_tensor, target); auto on_value_tensor = scope->GetTensor(std::string(on_value_input.id())); SetRandInt(on_value_tensor, target, -1, on_value, on_value + 1); auto off_value_tensor = scope->GetTensor(std::string(off_value_input.id())); SetRandInt(off_value_tensor, target, -1, off_value, off_value + 1); runtime_program->Execute(); auto output_tensor = scope->GetTensor(std::string(output->id)); const std::vector& output_shape = output_tensor->shape().data(); std::vector output_data = GetTensorData(output_tensor, target); EXPECT_EQ(output_tensor->type(), Int(32)); EXPECT_EQ(output_shape.size(), intput_shape.size() + 1); const int true_axis = axis == -1 ? M : axis; int input_shape_index = 0; for (int i = 0; i < output_shape.size(); i++) { LOG(INFO) << output_shape[i]; if (i == true_axis) { EXPECT_EQ(output_shape[i], depth); } else { EXPECT_EQ(output_shape[i], intput_shape[input_shape_index++]); } } for (int i = 0; i < output_shape[0]; ++i) { for (int j = 0; j < output_shape[1]; ++j) { for (int k = 0; k < output_shape[2]; ++k) { std::vector s = {i, j, k}; int input_index = 0; int output_index = 0; int base = 1; for (int x = s.size() - 1; x >= 0; --x) { if (x == true_axis) { continue; } input_index += base * s[x]; base = base * output_shape[x]; } base = 1; for (int x = s.size() - 1; x >= 0; --x) { output_index += base * s[x]; base = base * output_shape[x]; } if (s[true_axis] == input_data[input_index]) { EXPECT_EQ(output_data[output_index], on_value); } else { EXPECT_EQ(output_data[output_index], off_value); } } } } } } // namespace frontend } // namespace cinn