// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef PADDLE_WITH_XPU #include #include #include #include #include #include "paddle/fluid/operators/reduce_ops/reduce_op.h" #include "paddle/fluid/platform/xpu/xpu_header.h" namespace paddle { namespace operators { template void XPUReduce( const framework::ExecutionContext& context, std::function&, const std::vector&)> func) { PADDLE_ENFORCE_EQ( platform::is_xpu_place(context.GetPlace()), true, platform::errors::Unavailable("This kernel only runs on XPU.")); bool reduce_all = context.Attr("reduce_all"); auto dims = context.Attr>("dim"); auto* x = context.Input("X"); auto* y = context.Output("Out"); y->mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); int out_dtype = context.Attr("out_dtype"); PADDLE_ENFORCE_EQ(out_dtype == -1, true, platform::errors::InvalidArgument( "XPU only support out_dtype == -1 in reduce op.")); const auto* x_data = x->data(); auto* y_data = y->data(); const auto& input_dim_size = x->dims().size(); std::vector true_dims; for (size_t i = 0; i < dims.size(); ++i) { if (dims[i] < 0) { true_dims.push_back(dims[i] + input_dim_size); } else { true_dims.push_back(dims[i]); } } std::vector reduce_dims; std::vector xdims((input_dim_size)); for (int i = 0; i < input_dim_size; ++i) { xdims[i] = x->dims()[i]; } if (reduce_all) { for (int i = 0; i < input_dim_size; ++i) { reduce_dims.push_back(i); } } else { std::set dims_set(true_dims.begin(), true_dims.end()); for (auto i = 0; i < input_dim_size; i++) { if (dims_set.find(i) != dims_set.end()) { if (x->dims()[i] != 1) { reduce_dims.push_back(i); } } } } if (reduce_dims.size() == 0) { int r = xpu::copy(dev_ctx.x_context(), x_data, y_data, x->numel() * sizeof(T)); PADDLE_ENFORCE_EQ(r == xpu::Error_t::SUCCESS, true, platform::errors::External("XPU copy in reduce op return " "wrong value[%d %s].", r, XPUAPIErrorMsg[r])); } else { int r = func(dev_ctx.x_context(), x_data, y_data, xdims, reduce_dims); PADDLE_ENFORCE_EQ( r == xpu::Error_t::SUCCESS, true, platform::errors::External("XPU reduce op return wrong value[%d %s].", r, XPUAPIErrorMsg[r])); } } } // namespace operators } // namespace paddle #endif