# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import site import sys import unittest import numpy as np from utils import check_output, check_output_allclose import paddle from paddle import static from paddle.utils.cpp_extension.extension_utils import run_cmd from paddle.vision.transforms import Compose, Normalize def custom_relu_dynamic(func, device, dtype, np_x, use_func=True): paddle.set_device(device) t = paddle.to_tensor(np_x, dtype=dtype) t.stop_gradient = False t.retain_grads() out = func(t) if use_func else paddle.nn.functional.relu(t) return out.numpy() def custom_relu_static( func, device, dtype, np_x, use_func=True, test_infer=False ): paddle.enable_static() paddle.set_device(device) with static.scope_guard(static.Scope()): with static.program_guard(static.Program()): x = static.data(name='X', shape=[None, 8], dtype=dtype) out = func(x) if use_func else paddle.nn.functional.relu(x) exe = static.Executor() exe.run(static.default_startup_program()) # in static graph mode, x data has been covered by out out_v = exe.run( static.default_main_program(), feed={'X': np_x}, fetch_list=[out.name], ) paddle.disable_static() return out_v class TestNewCustomOpXpuSetUpInstall(unittest.TestCase): def setUp(self): cur_dir = os.path.dirname(os.path.abspath(__file__)) cmd = 'cd {} && {} custom_relu_xpu_setup.py install'.format( cur_dir, sys.executable ) run_cmd(cmd) site_dir = site.getsitepackages()[0] custom_egg_path = [ x for x in os.listdir(site_dir) if 'custom_relu_xpu_module_setup' in x ] assert len(custom_egg_path) == 1, "Matched egg number is %d." % len( custom_egg_path ) sys.path.append(os.path.join(site_dir, custom_egg_path[0])) # usage: import the package directly import custom_relu_xpu_module_setup self.custom_op = custom_relu_xpu_module_setup.custom_relu self.dtypes = ['float32'] self.device = 'xpu' # config seed SEED = 2021 paddle.seed(SEED) paddle.framework.random._manual_program_seed(SEED) def test_static(self): for dtype in self.dtypes: x = np.random.uniform(-1, 1, [4, 8]).astype(dtype) out = custom_relu_static(self.custom_op, self.device, dtype, x) pd_out = custom_relu_static( self.custom_op, self.device, dtype, x, False ) check_output(out, pd_out, "out") def test_dynamic(self): for dtype in self.dtypes: x = np.random.uniform(-1, 1, [4, 8]).astype(dtype) out = custom_relu_dynamic(self.custom_op, self.device, dtype, x) pd_out = custom_relu_dynamic( self.custom_op, self.device, dtype, x, False ) check_output(out, pd_out, "out") def test_with_dataloader(self): paddle.disable_static() paddle.set_device(self.device) # data loader transform = Compose( [Normalize(mean=[127.5], std=[127.5], data_format='CHW')] ) train_dataset = paddle.vision.datasets.MNIST( mode='train', transform=transform ) train_loader = paddle.io.DataLoader( train_dataset, batch_size=64, shuffle=True, drop_last=True, num_workers=0, ) for batch_id, (image, _) in enumerate(train_loader()): out = self.custom_op(image) pd_out = paddle.nn.functional.relu(image) check_output_allclose(out, pd_out, "out", atol=1e-2) if batch_id == 5: break paddle.enable_static() if __name__ == '__main__': # compile, install the custom op egg into site-packages under background # Currently custom XPU op does not support Windows if os.name == 'nt': sys.exit() unittest.main()