// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/operators/activation_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op.h" #include "paddle/fluid/operators/elementwise/elementwise_op_function.h" namespace paddle { namespace lite { namespace kernels { namespace x86 { template struct SubFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a - b; } }; template struct AddFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } }; template class ElementwiseSubCompute : public KernelLite { public: using param_t = operators::ElementwiseParam; void Run() override { auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK(context.x86_device_context); param.Out->template mutable_data(); paddle::operators::ElementwiseComputeEx, platform::CPUDeviceContext, T>( *context.x86_execution_context, ¶m.X->raw_tensor(), ¶m.Y->raw_tensor(), param.axis, SubFunctor(), ¶m.Out->raw_tensor()); } virtual ~ElementwiseSubCompute() = default; }; template struct SubGradDX { T operator()(T x, T y, T out, T dout) const { return dout; } }; template struct SubGradDY { T operator()(T x, T y, T out, T dout) const { return -dout; } }; template class ElementwiseSubGradCompute : public KernelLite { public: using param_t = operators::ElementwiseGradParam; void Run() override { auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK(context.x86_device_context); param.X_grad->template mutable_data(); param.Y_grad->template mutable_data(); // skip out, x, y auto dout = param.Out_grad->raw_tensor(); auto dx = param.X_grad->raw_tensor(); auto dy = param.Y_grad->raw_tensor(); auto& skip = dout; paddle::operators::ElemwiseExplicitGradCompute< platform::CPUDeviceContext, T, SubGradDX, SubGradDY>( *context.x86_execution_context, skip, skip, skip, dout, param.axis, &dx, &dy, SubGradDX(), SubGradDY()); } virtual ~ElementwiseSubGradCompute() = default; }; template class ElementwiseAddCompute : public KernelLite { public: using param_t = operators::ElementwiseParam; void Run() override { auto& param = *param_.get_mutable(); auto& context = ctx_->As(); CHECK(context.x86_device_context); param.Out->template mutable_data(); paddle::operators::ElementwiseComputeEx, platform::CPUDeviceContext, T>( *context.x86_execution_context, ¶m.X->raw_tensor(), ¶m.Y->raw_tensor(), param.axis, AddFunctor(), ¶m.Out->raw_tensor()); } virtual ~ElementwiseAddCompute() = default; }; } // namespace x86 } // namespace kernels } // namespace lite } // namespace paddle // float REGISTER_LITE_KERNEL(elementwise_sub, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::ElementwiseSubCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize(); REGISTER_LITE_KERNEL(elementwise_sub_grad, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::ElementwiseSubCompute, def) .BindInput(paddle::framework::GradVarName("Out"), {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput(paddle::framework::GradVarName("X"), {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput(paddle::framework::GradVarName("Y"), {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize(); REGISTER_LITE_KERNEL(elementwise_add, kX86, kFloat, kNCHW, paddle::lite::kernels::x86::ElementwiseAddCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kX86))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kX86))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kX86))}) .Finalize();