// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include "paddle/fluid/framework/op_kernel_type.h" #include "paddle/fluid/framework/string_array.h" #include "paddle/fluid/framework/variable.h" #include "paddle/fluid/imperative/hooks.h" #include "paddle/fluid/imperative/op_base.h" namespace paddle { namespace imperative { class VariableWrapperHook; class InplaceVariableWrapperHook; class VarBase; class GradOpNode; class VariableWrapper { public: friend class VarBase; explicit VariableWrapper(const std::string& name) : name_(name) {} VariableWrapper(const std::string& name, const framework::Variable& variable) : var_(variable), name_(name) {} ~VariableWrapper() { VLOG(10) << "Destruct VariableWrapper: " << Name(); } const framework::Variable& Var() const { return var_; } framework::Variable* MutableVar() { return &var_; } // This is used for python api void SetOverridedStopGradient(bool stop_gradient) { overrided_stop_gradient_ = static_cast(stop_gradient); if (auto grad_var = grad_var_.lock()) { grad_var->SetOverridedStopGradient(stop_gradient); } } // This is used for python api bool OverridedStopGradient() const { return overrided_stop_gradient_ != 0; } // This is used inside C++ int InnerOverridedStopGradient() const { return overrided_stop_gradient_; } // This is used inside C++ void InnerSetOverridedStopGradient(bool stop_gradient) { if (overrided_stop_gradient_ == -1) { overrided_stop_gradient_ = static_cast(stop_gradient); } else { VLOG(6) << "Ignore Stop gradient conversion for Var: " << Name() << "Set value is: " << overrided_stop_gradient_; } if (auto grad_var = grad_var_.lock()) { grad_var->InnerSetOverridedStopGradient(stop_gradient); } } bool IsLeaf() const { if (OverridedStopGradient()) { return true; } if (HasGradVar() && !GetGradVar()->HasGradNode()) { return true; } return false; } bool IsLeafGrad() const { if (!HasGradNode() && !OverridedStopGradient()) { return true; } return false; } void SetPersistable(bool persistable) { persistable_ = persistable; } bool Persistable() const { return persistable_; } bool IsEmpty() const { bool is_empty = true; if (var_.IsInitialized()) { const framework::Tensor* tensor = nullptr; if (var_.IsType()) { tensor = &(var_.Get()); } else if (var_.IsType()) { tensor = &(var_.Get().value()); } else { PADDLE_THROW(platform::errors::PermissionDenied( "Only support LoDTensor and SelectedRows for gradient var")); } if (tensor && tensor->IsInitialized()) { is_empty = false; } } return is_empty || is_empty_; } // TODO(zhouwei): fix Tensor.clear_gradient() bug, function SetIsEmpty() isn't // need void SetIsEmpty(bool is_empty) { is_empty_ = is_empty; } const std::string& Name() const { return name_; } void SetName(const std::string& name) { name_ = name; } void SetType(framework::proto::VarType::Type type) { type_ = type; } framework::proto::VarType::Type Type() const { return type_; } std::shared_ptr GetGradVar() const { return grad_var_.lock(); } const std::weak_ptr& GetWeakGradVar() const { return grad_var_; } std::shared_ptr GetGradNode() const { return grad_node_.lock(); } bool HasGradNode() const { return !grad_node_.expired(); } bool HasGradVar() const { return !grad_var_.expired(); } void SetDataType(framework::proto::VarType::Type data_type) { data_type_ = data_type; } framework::proto::VarType::Type DataType() const { const framework::Tensor* tensor = nullptr; if (var_.IsInitialized()) { if (type_ == framework::proto::VarType::LOD_TENSOR) { tensor = &(var_.Get()); } else if (type_ == framework::proto::VarType::SELECTED_ROWS) { tensor = &(var_.Get().value()); } else if (type_ == framework::proto::VarType::VOCAB) { const framework::Vocab* data = nullptr; data = &(var_.Get()); if (data && data->size() != 0) { VLOG(6) << "The tensor of variable " << name_ << " is not initialized"; return data_type_; } return framework::proto::VarType::VOCAB; } else { VLOG(6) << "Variable " << name_ << " is not initialized"; return data_type_; } } if (tensor && tensor->IsInitialized()) { return tensor->type(); } else { VLOG(6) << "The tensor of variable " << name_ << " is not initialized"; return data_type_; } } void SetForwardDataType(framework::proto::VarType::Type data_type) { fwd_data_type_ = data_type; } framework::proto::VarType::Type ForwardDataType() const { return fwd_data_type_; } const platform::Place Place() const { const framework::Tensor* tensor = nullptr; auto place = platform::CPUPlace(); // Default place for var not initialized. if (var_.IsInitialized()) { if (type_ == framework::proto::VarType::LOD_TENSOR) { tensor = &(var_.Get()); } else if (type_ == framework::proto::VarType::SELECTED_ROWS) { tensor = &(var_.Get().value()); } else { VLOG(6) << "Variable " << name_ << " is not initialized"; return place; } } if (tensor && tensor->IsInitialized()) { return tensor->place(); } else { VLOG(6) << "The tensor of variable " << name_ << " is not initialized"; return place; } } uint32_t InplaceVersionSnapshot() const { return inplace_version_snapshot_; } void ResetInplaceVersion(bool set_to_zero = false) { if (!set_to_zero) { auto new_version = var_.CurrentInplaceVersion(); VLOG(6) << "The wrapper version of VariableWrapper '" << name_ << "' will be updated from " << inplace_version_snapshot_ << "to " << new_version; inplace_version_snapshot_ = new_version; } else { // Reset Snapshot & InplaceVersion to zero inplace_version_snapshot_ = 0; auto var = this->MutableVar(); if (var) { var->SetInplaceVersionToZero(); } } } bool hasCacheKey(const paddle::framework::OpKernelType& key) { return var_cache.find(key) != var_cache.end(); } std::shared_ptr getCacheValue( const paddle::framework::OpKernelType& key) { return var_cache[key]; } void setCacheValue(const paddle::framework::OpKernelType& key, std::shared_ptr val) { var_cache[key] = val; return; } /* Hook related methods */ bool HasVariableWrapperHook() const { return !var_hooks_.empty(); } int64_t AddVariableWrapperHook(std::shared_ptr&& hook) { var_hooks_.emplace(next_hook_id_, std::move(hook)); return next_hook_id_++; } bool RemoveVariableWrapperHook(const int64_t& hook_id) { auto remove_cnt = var_hooks_.erase(hook_id); if (remove_cnt == 0) { return false; } return true; } const std::map>& GetVariableWrapperHooks() const { return var_hooks_; } bool HasVoidHook() const { return !void_hooks_.empty(); } void AddVoidHook(std::shared_ptr>&& hook) { void_hooks_.emplace_back(std::move(hook)); } const std::vector>>& GetVoidHooks() const { return void_hooks_; } private: void SetGradVar(const std::shared_ptr& var) { auto shared_var = grad_var_.lock(); if (shared_var != var) { PADDLE_ENFORCE_EQ( shared_var, nullptr, platform::errors::PermissionDenied( "Cannot set gradient variable wrapper twice for %s", name_)); grad_var_ = var; } } void SetGradNode(const std::shared_ptr& grad_node) { if (!grad_node) { grad_node_.reset(); return; } auto shared_node = grad_node_.lock(); if (shared_node != grad_node) { if (grad_node->InplaceGradNameMap().empty()) { // grad_node doesn't have Inplace message PADDLE_ENFORCE_EQ( shared_node, nullptr, platform::errors::PermissionDenied( "Cannot set gradient op twice unless using Inplace Strategy.")); } else if (shared_node) { VLOG(3) << "The gradient op of Var (" << Name() << ") has been set twice. Because Inplace Strategy is used."; } grad_node_ = grad_node; } } private: framework::Variable var_; std::string name_; // Used for cache the dtype promotioned variableWrapper in real and complex // compute of Paddle Quantum std::map> var_cache; // add this property for users may set stop_gradient themselves and this // should override the frameworks setting (-1) unset, (1) true, (0) false int overrided_stop_gradient_{-1}; bool persistable_{false}; // Used for checking whether there is any inplace operation affecting gradient // calculation. uint32_t inplace_version_snapshot_{0}; framework::proto::VarType::Type type_{framework::proto::VarType::LOD_TENSOR}; framework::proto::VarType::Type data_type_{framework::proto::VarType::FP32}; // See [ Why need handle complex gradient to real gradient? ] // Used for grad var to get the data type of its corresponding forward var, // if inconsistent, the data type of grad var needs to be casted to be // consistent with forward var framework::proto::VarType::Type fwd_data_type_{ static_cast(-1)}; std::weak_ptr grad_var_; std::weak_ptr grad_node_; // TODO(zhouwei): fix bug of Tensor.clear_gradient(), function SetIsEmpty() // isn't need bool is_empty_{false}; // NOTE(chenweihang): only grad var will hold hooks now int64_t next_hook_id_{0}; // [ Hooks with VariableWrapper as input and output ] // NOTE: Now registered for grad var, support adding and removing, // key is the accumulated int64_t value // NOTE: Var hook need to support removing, so need hook id std::map> var_hooks_; // [ Hooks without input and output ] // NOTE: Now registered after the execution of the entire backward // process is over, currently only used for reducing in distributed // training // NOTE: Now no need to support remove void hook std::vector>> void_hooks_; }; } // namespace imperative } // namespace paddle