/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { template class PnormNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in_x = ctx.Input("X"); auto* out_norm = ctx.Output("Out"); out_norm->mutable_data(ctx.GetPlace()); float porder = ctx.Attr("porder"); int axis = ctx.Attr("axis"); bool keepdim = ctx.Attr("keepdim"); auto xdim = in_x->dims(); if (axis < 0) axis = xdim.size() + axis; auto stream = ctx.template device_context() .stream(); int p = 0; bool combine_op = !(porder == 0 || porder == INFINITY || porder == -INFINITY); if (porder == INFINITY) { p = INT_MAX; } else if (porder == -INFINITY) { p = INT_MIN; } else { p = static_cast(porder); float t = 0; float diff = abs(std::modf(porder, &t)); if (diff < 1e-5) { combine_op = false; } } if (!combine_op) { const auto& runner = NpuOpRunner("LpNorm", {*in_x}, {*out_norm}, {{"p", p}, {"axes", std::vector({axis})}, {"keep_dims", keepdim}}); runner.Run(stream); } else { phi::DenseTensor tmp_x; tmp_x.mutable_data(xdim, ctx.GetPlace()); const auto& power_runner1 = NpuOpRunner("Power", {*in_x}, {tmp_x}, {{"power", porder}, {"scale", 1.0f}, {"shift", 0.0f}}); power_runner1.Run(stream); const auto& reduce_runner = NpuOpRunner( "ReduceSumD", {tmp_x}, {*out_norm}, {{"axes", std::vector({axis})}, {"keep_dims", keepdim}}); reduce_runner.Run(stream); const auto& power_runner2 = NpuOpRunner( "Power", {*out_norm}, {*out_norm}, {{"power", 1 / porder}, {"scale", 1.0f}, {"shift", 0.0f}}); power_runner2.Run(stream); } } }; template class PnormGradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* y = ctx.Input("Out"); auto* dy = ctx.Input(framework::GradVarName("Out")); auto* dx = ctx.Output(framework::GradVarName("X")); auto place = ctx.GetPlace(); dx->mutable_data(place); auto xdim = x->dims(); float porder = ctx.Attr("porder"); bool keepdim = ctx.Attr("keepdim"); int axis = ctx.Attr("axis"); axis = axis < 0 ? xdim.size() + axis : axis; auto stream = ctx.template device_context() .stream(); phi::DenseTensor y_share(y->type()); phi::DenseTensor dy_share(dy->type()); y_share.ShareDataWith(*y); dy_share.ShareDataWith(*dy); auto ydim = xdim; if (!keepdim) { ydim[axis] = 1; } else { ydim = y->dims(); } y_share.Resize(ydim); dy_share.Resize(ydim); if (porder == 0) { FillNpuTensorWithConstant(dx, static_cast(0)); dx->Resize(xdim); } else if (porder == INFINITY || porder == -INFINITY) { phi::DenseTensor x_abs; x_abs.mutable_data(xdim, place); const auto& r_abs = NpuOpRunner("Abs", {*x}, {x_abs}, {}); r_abs.Run(stream); phi::DenseTensor t_cond; t_cond.mutable_data(xdim, place); const auto& r_equal = NpuOpRunner("Equal", {x_abs, y_share}, {t_cond}, {}); r_equal.Run(stream); phi::DenseTensor t_zero; t_zero.mutable_data({1}, place); FillNpuTensorWithConstant(&t_zero, static_cast(0)); phi::DenseTensor x_sign; x_sign.mutable_data(xdim, place); const auto& r_sign = NpuOpRunner("Sign", {*x}, {x_sign}, {}); r_sign.Run(stream); const auto& r_mul = NpuOpRunner("Mul", {x_sign, dy_share}, {*dx}, {}); r_mul.Run(stream); const auto& r_sel = NpuOpRunner("SelectV2", {t_cond, *dx, t_zero}, {*dx}, {}); r_sel.Run(stream); } else { phi::DenseTensor x_abs; x_abs.mutable_data(xdim, place); const auto& r_abs = NpuOpRunner("Abs", {*x}, {x_abs}, {}); r_abs.Run(stream); phi::DenseTensor x_sign; x_sign.mutable_data(xdim, place); const auto& r_sign = NpuOpRunner("Sign", {*x}, {x_sign}, {}); r_sign.Run(stream); phi::DenseTensor y_pow; y_pow.mutable_data(ydim, place); if (porder >= 1) { const auto& r_pow1 = NpuOpRunner( "Power", {x_abs}, {x_abs}, {{"power", (porder - 1)}, {"scale", 1.0f}, {"shift", 0.0f}}); r_pow1.Run(stream); const auto& r_pow2 = NpuOpRunner( "Power", {y_share}, {y_pow}, {{"power", (porder - 1)}, {"scale", 1.0f}, {"shift", 0.0f}}); r_pow2.Run(stream); const auto& r_div = NpuOpRunner("DivNoNan", {x_abs, y_pow}, {*dx}, {}); r_div.Run(stream); } else { const auto& r_pow1 = NpuOpRunner( "Power", {x_abs}, {x_abs}, {{"power", (1 - porder)}, {"scale", 1.0f}, {"shift", 0.0f}}); r_pow1.Run(stream); const auto& r_pow2 = NpuOpRunner( "Power", {y_share}, {y_pow}, {{"power", (1 - porder)}, {"scale", 1.0f}, {"shift", 0.0f}}); r_pow2.Run(stream); const auto& r_div = NpuOpRunner("DivNoNan", {y_pow, x_abs}, {*dx}, {}); r_div.Run(stream); } const auto& r_mul1 = NpuOpRunner("Mul", {*dx, x_sign}, {*dx}, {}); r_mul1.Run(stream); const auto& r_mul2 = NpuOpRunner("Mul", {*dx, dy_share}, {*dx}, {}); r_mul2.Run(stream); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_NPU_KERNEL( p_norm, ops::PnormNPUKernel, ops::PnormNPUKernel); REGISTER_OP_NPU_KERNEL( p_norm_grad, ops::PnormGradNPUKernel, ops::PnormGradNPUKernel);